Skip to main content
Log in

The rpoH gene encoding heat shock sigma factor σ32 of psychrophilic bacterium Colwellia maris

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The rpoH gene encoding a heat shock sigma factor, σ32, was cloned from the psychrophilic bacterium Colwellia maris. The deduced amino acid sequence of σ32 from C. maris is more than 60% homologous to that of σ32 from mesophilic bacteria. The RpoH box, a 9-amino-acid sequence region (QRKLFFNLR) specific to σ32, and two downstream box sequences complementary to a part of 16S rRNA were identified. Primer extension analysis showed that the C. maris rpoH is expressed from only one σ70-type promoter. Northern blot analysis showed that the level of rpoH mRNA was clearly increased at 20°C, a temperature that induces heat shock in this organism. In the presence of an inhibitor of transcriptional initiation, the degradation of rpoH mRNA was much slower at 20°C than at 10°C. Thus, increased stability of the rpoH mRNA might be responsible for the rpoH mRNA accumulation. The predicted secondary structure of the 5′-region of C. maris rpoH mRNA was different from the conserved patterns reported for most mesophilic bacteria, and the base pairing of the downstream boxes appeared to be less stable than that of Escherichia coli rpoH mRNA. Thus, essential features that ensure the HSP expression at a relatively low temperature are embedded in the rpoH gene of psychrophiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arsene F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55:3–9

    Article  PubMed  Google Scholar 

  • Benvenisti L, Koby S, Rutman A, Giladi H, Yura T, Oppenheim AB (1995) Cloning and primary sequence of the rpoH gene from Pseudomonas aeruginosa. Gene 155:73–76

    Article  PubMed  Google Scholar 

  • Bukau B (1993) Regulation of the Escherichia coli heat-shock response. Mol Microbiol 9:671–680

    PubMed  Google Scholar 

  • Hengge R, Bukau B (2003) Proteolysis in prokaryotes: protein quality control and regulatory principles. Mol Microbiol 49:1451–1462

    Article  PubMed  Google Scholar 

  • Hofacker IL, Fontana W, Stadler PF, Bonhoeffer S, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatshefte f Chemie 125:167–188

    Article  Google Scholar 

  • Lonetto M, Gribskov M, Gross CA (1992) The σ70 family: sequence conservation and evolutionary relationships. J Bacteriol 174:3843–3849

    PubMed  Google Scholar 

  • Manzanera M, Aranda-Olmedo I, Ramos JL, Marqués S (2001) Molecular characterization of Pseudomonas putida KT2440 rpoH gene regulation. Microbiology 147:1323–1330

    PubMed  Google Scholar 

  • McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29:1105–1119

    Article  PubMed  Google Scholar 

  • Morita M, Kanemori M, Yanagi H, Yura T (1999a) Heat-induced synthesis of σ32 in Escherichia coli: structural and functional dissection of rpoH mRNA secondary structure. J Bacteriol 181:401–410

    PubMed  Google Scholar 

  • Morita MT, Tanaka Y, Kodama TS, Kyogoku Y, Yanagi H, Yura T (1999b) Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor. Genes Dev 13:655–665

    PubMed  Google Scholar 

  • Naczynski ZM, Mueller C, Kropinski AM (1995) Cloning the gene for the heat shock response positive regulator (σ32 homolog) from Pseudomonas aeruginosa. Can J Microbiol 41:75–87

    PubMed  Google Scholar 

  • Nagai H, Yuzawa H, Kanemori M, Yura T (1994) A distinct segment of the σ32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli. Proc Natl Acad Sci USA 91:10280–10284

    PubMed  Google Scholar 

  • Nagai H, Yuzawa H, Yura T (1991) Interplay of two cis-acting mRNA regions in translational control of σ32 synthesis during the heat shock response of Escherichia coli. Proc Natl Acad Sci USA 88:10515–10519

    PubMed  Google Scholar 

  • Nakahigashi K, Yanagi H, Yura T (1995) Isolation and sequence analysis of rpoH genes encoding σ32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res 23:4383–4390

    PubMed  Google Scholar 

  • Nocker A, Hausherr T, Balsiger S, Krstulovic NP, Hennecke H, Narberhaus F (2001) A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res 29:4800–4807

    Article  PubMed  Google Scholar 

  • Ochiai T, Fukunaga N, Sasaki S (1979) Purification and some properties of two NADP+-specific isocitrate dehydrogenases from an obligately psychrophilic marine bacterium, Vibrio sp. strain ABE-1. J Biochem 86:377–384

    PubMed  Google Scholar 

  • Osipiuk J, Joachimiak A (1997) Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus. Biochim Biophys Acta 1353:253–265

    PubMed  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  PubMed  Google Scholar 

  • Ramirez-Santos J, Collado-Vides J, Garcia-Varela M, Gomez-Eichelmann MC (2001) Conserved regulatory elements of the promoter sequence of the gene rpoH of enteric bacteria. Nucleic Acids Res 29:380–386

    Article  PubMed  Google Scholar 

  • Reisenauer A, Mohr CD, Shapiro L (1996) Regulation of a heat shock σ32 homolog in Caulobacter crescentus. J. Bacteriol. 178:1919–1927

    PubMed  Google Scholar 

  • Sahu GK, Chowdhury R, Das J (1997) The rpoH gene encoding σ32 homolog of Vibrio cholerae. Gene 189:203–207

    Article  PubMed  Google Scholar 

  • Sakamoto T, Higashi S, Wada H, Murata N, Bryant DA (1997) Low-temperature-induced desaturation of fatty acids and expression of desaturase genes in the cyanobacterium Synechococcus sp. PCC 7002. FEMS Microbiol Lett 152:313–320

    Article  PubMed  Google Scholar 

  • Segal R, Ron EZ (1996) Regulation and organization of the groE and dnaK operons in Eubacteria. FEMS Microbiol Lett 138:1–10

    Article  PubMed  Google Scholar 

  • Tatsuta T, Joob DM, Calendar R, Akiyama Y, Ogura T (2000) Evidence for an active role of the DnaK chaperone system in the degradation of σ32. FEBS Lett 478:271–275

    Article  PubMed  Google Scholar 

  • Tatsuta T, Tomoyasu T, Bukau B, Kitagawa M, Mori H, Karata K, Ogura T (1998) Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of σ32 in vivo. Mol Microbiol 30:583–593

    Article  PubMed  Google Scholar 

  • Walter S, Buchner J (2002) Molecular chaperones-cellular machines for protein folding. Angew Chem Int Ed 41:1098–1113

    Article  Google Scholar 

  • Wang QP, Kaguni JM (1989) A novel sigma factor is involved in expression of the rpoH gene of Escherichia coli. J Bacteriol 171:4248–4253

    PubMed  Google Scholar 

  • Williams JGK (1988) Construction of specific mutations in photosystemII photosynthetic reaction center by genetic engineering methods in Synechocystis PCC 6803. Methods Enzymol 167:766–778

    Google Scholar 

  • Yamanaka K (1999) Cold shock response in Escherichia coli. J Mol Microbiol Biotechnol 1:193–202

    PubMed  Google Scholar 

  • Yamauchi S, Okuyama H, Morita EH, Hayashi H (2003) Gene structure and transcriptional regulation specific to the groESL operon from the psychrophilic bacterium Colwellia maris. Arch Microbiol 180:272–278

    Article  PubMed  Google Scholar 

  • Yamauchi S, Okuyama H, Nishiyama Y, Hayashi H (2004) Gene structure and transcriptional regulation of dnaK and dnaJ genes from a psychrophilic bacterium, Colwellia maris. Extremophiles 8:283–290

    Article  PubMed  Google Scholar 

  • Yumoto I, Kawasaki K, Iwata H, Matsuyama H, Okuyama H (1998) Assignment of Vibrio sp strain ABE-1 to Colwellia maris sp. nov., a new psychrophilic bacterium. Int J Syst Bacteriol 48:1357–1362

    PubMed  Google Scholar 

  • Yura T, Nakahigashi K (1999) Regulation of the heat-shock response. Curr Opin Microbiol 2:153–158

    Article  PubMed  Google Scholar 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by a Grant-in-Aid for Scientific Research (no. 15013243 to Y.N.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Hayashi.

Additional information

Communicated by K. Horikoshi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamauchi, S., Okuyama, H., Nishiyama, Y. et al. The rpoH gene encoding heat shock sigma factor σ32 of psychrophilic bacterium Colwellia maris. Extremophiles 10, 149–158 (2006). https://doi.org/10.1007/s00792-005-0485-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-005-0485-9

Keywords

Navigation