Extremophiles

, Volume 10, Issue 1, pp 1–16 | Cite as

Rhodothermus marinus: physiology and molecular biology

  • Snaedis H. Bjornsdottir
  • Thorarinn Blondal
  • Gudmundur O. Hreggvidsson
  • Gudmundur Eggertsson
  • Solveig Petursdottir
  • Sigridur Hjorleifsdottir
  • Sigridur H. Thorbjarnardottir
  • Jakob K. Kristjansson
Review

Abstract

Rhodothermus marinus has been the subject of many studies in recent years. It is a thermohalophilic bacterium and is the only validly described species in the genus Rhodothermus. It is not closely related to other well-known thermophiles and is the only thermophile within the family Crenotrichaceae. R. marinus has been isolated from several similar but distantly located geothermal habitats, many of which are subject to large fluctuations in environmental conditions. This presumably affects the physiology of R. marinus. Many of its enzymes show optimum activity at temperatures considerably higher than 65°C, the optimum for growth, and some are active over a broad temperature range. Studies have found distinguishing components in the R. marinus electron transport chain as well as in its pool of intracellular solutes, which accumulate during osmotic stress. The species hosts both bacteriophages and plasmids and a functional intein has been isolated from its chromosome. Despite these interesting features and its unknown genetics, interest in R. marinus has been mostly stimulated by its thermostable enzymes, particularly polysaccharide hydrolysing enzymes and enzymes of DNA synthesis which may be useful in industry and in the laboratory. R. marinus has not been amenable to genetic analysis until recently when a system for gene transfer was established. Here, we review the current literature on R. marinus.

Keywords

Rhodothermus marinus Bacteroidetes Thermophile Halophile Thermostable enzymes 

Notes

Acknowledgements

We thank Dr. Ana Melo, Universidade Nova de Lisboa, Oeiras, Portugal, for reviewing part of the manuscript. S.H. Bjornsdottir is a recipient of a grant from the Icelandic Research Fund for Graduate Students.

References

  1. Abou-Hachem M, Nordberg Karlsson E, Bartonek-Roxa E, Raghothama S, Simpson PJ, Gilbert HJ, Williamson MP, Holst O (2000) Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochem J 345:53–60CrossRefPubMedGoogle Scholar
  2. Abou-Hachem M, Nordberg Karlsson E, Simpson PJ, Linse S, Sellers P, Williamson MP, Jamieson SJ, Gilbert HJ, Bolam DN, Holst O (2002) Calcium binding and thermostability of carbohydrate binding module CBM4-2 of Xyn10A from Rhodothermus marinus. Biochemistry 41:5720–5729CrossRefPubMedGoogle Scholar
  3. Abou-Hachem M, Olsson F, Nordberg Karlsson E (2003a) Probing the stability of the modular family 10 xylanase from Rhodothermus marinus. Extremophiles 7:483–491CrossRefPubMedGoogle Scholar
  4. Abou-Hachem M, Olsson F, Williamson MP, Linse S, Crennell SJ, Hreggvidsson GO, Kristjansson JK, Holst O, Nordberg Karlsson E (2003b) The modular organisation and stability of a thermostable family 10 xylanase. Biocatal Biotransform 21:253–260CrossRefGoogle Scholar
  5. Alfredsson GA, Kristjansson JK, Hjorleifsdottir S, Stetter KO (1988) Rhodothermus marinus, gen nov, sp nov, a thermophilic, halophilic bacterium from submarine hot springs in Iceland. J Gen Microbiol 134:299–306Google Scholar
  6. Andresson OS, Fridjonsson OH (1994) The sequence of the single 16S ribosomal RNA gene of the thermophilic eubacterium Rhodothermus marinus reveals a distant relationship to the group containing Flexibacter, Bacteroides, and Cytophaga species. J Bacteriol 176:6165–6169PubMedGoogle Scholar
  7. Anton J, Oren A, Benlloch S, Rodriguez-Valera F, Amann R, Rossello-Mora R (2002) Salinibacter ruber gen nov, sp nov, a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491PubMedGoogle Scholar
  8. Aravind L, Koonin EV (1998) The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem Sci 23:469–472CrossRefPubMedGoogle Scholar
  9. Backman VM (1997) Heat shock in Rhodothermus marinus. MS Thesis, University of Iceland, IcelandGoogle Scholar
  10. Bjornsdottir SH, Thorbjarnardottir SH, Eggertsson G (2005) Establishment of a gene transfer system for Rhodothermus marinus. Appl Microbiol Biotechnol 66:675–682CrossRefPubMedGoogle Scholar
  11. Blondal T, Thorbjarnardottir SH, Kieleczawa J, Einarsson JM, Hjorleifsdottir S, Kristjansson JK, Eggertsson G (1999) Cloning, sequence analysis and overexpression of a Rhodothermus marinus gene encoding a thermostable thymidine kinase. FEMS Microbiol Lett 179:311–316CrossRefPubMedGoogle Scholar
  12. Blondal T, Thorbjarnardottir SH, Kieleczawa J, Hjorleifsdottir S, Kristjansson JK, Einarsson JM, Eggertsson G (2001) Cloning, sequence analysis and functional characterization of DNA polymerase I from the thermophilic eubacterium Rhodothermus marinus. Biotechnol Appl Biochem 34:37–45CrossRefPubMedGoogle Scholar
  13. Blondal T, Hjorleifsdottir S, Fridjonsson OH, Aevarsson A, Skirnisdottir S, Hermannsdottir AG, Hreggvidsson GO, Smith AV, Kristjansson JK (2003) Discovery and characterization of a thermostable bacteriophage RNA ligase homologous to T4 RNA ligase 1. Nucleic Acids Res 31:7247–7254CrossRefPubMedGoogle Scholar
  14. Blondal T, Hjorleifsdottir S, Aevarsson A, Fridjonsson OH, Skirnisdottir S, Wheat JO, Hermannsdottir AG, Hreggvidsson GO, Smith AV, Kristjansson JK (2005) Characterization of a 5′-polynucleotide kinase/3′-phosphatase from bacteriophage RM378. J Biol Chem 280:5188–5194CrossRefPubMedGoogle Scholar
  15. Blucher A, Nordberg Karlsson E, Holst O (2000) Substrate-dependent production and some properties of a thermostable, alpha-galactosidase from Rhodothermus marinus. Biotechnol Lett 22:663–669CrossRefGoogle Scholar
  16. Borges N, Ramos A, Raven NDH, Sharp RJ, Santos H (2002) Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Extremophiles 6:209–216CrossRefPubMedGoogle Scholar
  17. Borges N, Marugg JD, Empadinhas N, da Costa MS, Santos H (2004) Specialized roles of the two pathways for the synthesis of mannosylglycerate in osmoadaptation and thermoadaptation of Rhodothermus marinus. J Biol Chem 279:9892–9898CrossRefPubMedGoogle Scholar
  18. Chung AP, Nunes OC, Tindall BJ, da Costa MS (1993) The effect of the growth medium composition on the fatty acids of Rhodothermus marinus and Thermus thermophilus HB-8. FEMS Microbiol Lett 112:13–18CrossRefGoogle Scholar
  19. Crennell SJ, Hreggvidsson GO, Nordberg Karlsson E (2002) The structure of Rhodothermus marinus Cel12A, a highly thermostable family 12 endoglucanase, at 1.8 angstrom resolution. J Mol Biol 320:883–897CrossRefPubMedGoogle Scholar
  20. Dahlberg L, Holst O, Kristjansson JK (1993) Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl Microbiol Biotechnol 40:63–68CrossRefGoogle Scholar
  21. Degryse E, Glansdorff N, Pièrard A (1978) A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch Microbiol 17:189–196CrossRefGoogle Scholar
  22. Ernstsson S, Bjornsdottir SH, Jonsson ZO, Thorbjarnardottir SH, Eggertsson G, Palsdottir A (2003) Identification and nucleotide sequence analysis of a cryptic plasmid, pRM21, from Rhodothermus marinus. Plasmid 49:188–191CrossRefPubMedGoogle Scholar
  23. Fernandes AS, Pereira MM, Teixeira M (2001) The succinate dehydrogenase from the thermohalophilic bacterium Rhodothermus marinus: Redox–Bohr effect on heme b(L). J Bioenerg Biomembr 33:343–352CrossRefPubMedGoogle Scholar
  24. Fernandes AS, Pereira MM, Teixeira M (2002) Purification and characterization of the complex I from the respiratory chain of Rhodothermus marinus. J Bioenerg Biomembr 34:413–421CrossRefPubMedGoogle Scholar
  25. Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the prokaryotes release 5.0 May 2004 In Bergey’s manual of systematic bacteriology. Springer-Verlag, New York, DOI:10.1007/bergeysoutline200405Google Scholar
  26. Gennis RB, Stewart V (1996) Respiration. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. American Society for Microbiology, Washington, DC, pp 217–261Google Scholar
  27. Gomes J, Steiner W (1998) Production of a high activity of an extremely thermostable beta-mannanase by the thermophilic eubacterium Rhodothermus marinus, grown on locust bean gum. Biotechnol Lett 20:729–733CrossRefGoogle Scholar
  28. Gomes J, Gomes I, Terler K, Gubala N, Ditzelmuller G, Steiner W (2000) Optimisation of culture medium and conditions for alpha-L-arabinofuranosidase production by the extreme thermophilic eubacterium Rhodothermus marinus. Enzyme Microb Technol 27:414–422CrossRefPubMedGoogle Scholar
  29. Gomes I, Gomes J, Steiner W (2003) Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresource Technol 90:207–214CrossRefGoogle Scholar
  30. Gudmundsdottir K, Sigurdsson E, Thorbjarnardottir SH, Eggertsson G (1999) Cloning and sequence analysis of the hemB gene of Rhodothermus marinus. Curr Microbiol 39:103–105CrossRefPubMedGoogle Scholar
  31. Halldorsdottir S, Thorolfsdottir ET, Spilliaert R, Johansson M, Thorbjarnardottir SH, Palsdottir A, Hreggvidsson GO, Kristjansson JK, Holst O, Eggertsson G (1998) Cloning, sequencing and overexpression of a Rhodothermus marinus gene encoding a thermostable cellulase of glycosyl hydrolase family 12. Appl Microbiol Biotechnol 49:277–284CrossRefPubMedGoogle Scholar
  32. Hamana K, Hamana H, Niitsu M, Samejima K, Matsuzaki S (1992) Distribution of unusual long and branched polyamines in thermophilic eubacteria belonging to Rhodothermus,Thermusand Thermonema. J Gen Appl Microbiol 38:575–584Google Scholar
  33. Hirsch P (1989) Genus Toxothrix Molisch 1925, 144AL. In: Holt JG, Staley JT, Bryant MP, Pfenning N (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 2120–2121Google Scholar
  34. Hirsch P (1991) The genus Toxothrix. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer-Verlag, New York, pp 4026–4029Google Scholar
  35. Hjorleifsdottir S, Petursdottir SK, Korpela J, Torsti AM, Mattila P, Kristjansson JK (1996) Screening for restriction endonucleases in aerobic, thermophilic eubacteria. Biotechnol Tech 10:13–18CrossRefGoogle Scholar
  36. Hjorleifsdottir S, Ritterbusch W, Petursdottir SK, Kristjansson JK (1997) Thermostabilities of DNA ligases and DNA polymerases from four genera of thermophilic eubacteria. Biotechnol Lett 19:147–150CrossRefGoogle Scholar
  37. Hjorleifsdottir S, Hreggvidsson GO, Fridjonsson OH, Aevarsson A, Kristjansson JK (2002) Bacteriophage RM378 of a thermophilic host organism. US Patent 6, 492,161Google Scholar
  38. Hobel CFV, Hreggvidsson GO, Marteinsson VT, Bahrani-Mougeout F, Einarsson JM, Kristjansson JK (2005) Cloning, expression and characterization of a highly thermostable family 18 chitinase from Rhodothermus marinus. Extremophiles 9:53–64CrossRefPubMedGoogle Scholar
  39. Housby JN, Southern EM (2002) Thermus scotoductus and Rhodothermus marinus DNA ligases have higher ligation efficiencies than Thermus thermophilus DNA ligase. Anal Biochem 302:88–94CrossRefPubMedGoogle Scholar
  40. Housby JN, Thorbjarnadottir SH, Jónsson ZO, Southern EM (2000) Optimized ligation of oligonucleotides by thermal ligases: comparison of Thermus scotoductus and Rhodothermus marinus DNA ligases to other thermophilic ligases. Nucleic Acids Res 28:E10CrossRefPubMedGoogle Scholar
  41. Hreggvidsson GO, Kaiste E, Holst O, Eggertsson G, Palsdottir A, Kristjansson JK (1996) An extremely thermostable cellulase from the thermophilic eubacterium Rhodothermus marinus. Appl Environ Microbiol 62:3047–3049Google Scholar
  42. Hugenholtz P, Pitulle C, Herschberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376PubMedGoogle Scholar
  43. Kaufmann G (2000) Anticodon nucleases. Trends Bioche Sci 25:70–74CrossRefGoogle Scholar
  44. Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Lett 39:91–100Google Scholar
  45. Koga S, Takahashi M (2000) Stable hexokinase and a process for producing it. Patent JP 2000078982-A/1Google Scholar
  46. Krah M, Misselwitz R, Politz O, Thomsen KK, Welfe H, Borriss R (1998) The laminarinase from thermophilic eubacterium Rhodothermus marinus—conformation, stability, and identification of active site carboxylic residues by site-directed mutagenesis. Eur J Biochem 257:101–111CrossRefPubMedGoogle Scholar
  47. Kristjansdottir GT (2000) Diversity of bacteriophages in hot spring water. MS Thesis, University of Iceland, IcelandGoogle Scholar
  48. Kristjansson JK, Alfredsson GA (1992) The herotrophic, thermophilic genera Thermomicrobium, Rhodothermus, Saccharococcus, Acidothermus and Scotothermus. In: Kristjansson JK (ed) Thermophilic bacteria. CRC Press Inc, Boca Raton, pp 63–76Google Scholar
  49. Li T, Graham DE, Stathopoulos C, Haney PJ, Kim H, Vothkneecht U, Kitabatake M, Hong K, Eggertsson G, Curnow AW, Lin W, Celic I, Whitman W, Söll D (1999) Cysteinyl-tRNA formation: the last puzzle of aminoacyl-tRNA synthesis. FEBS Lett 462:302–306CrossRefPubMedGoogle Scholar
  50. Liu XQ, Hu ZM (1997) A DnaB intein in Rhodothermus marinus: indication of recent intein homing across remotely related organisms. Proc Natl Acad Sci USA 94:7851–7856CrossRefPubMedGoogle Scholar
  51. Lutnaes BF, Strand A, Petursdottir SK, Liaaen-Jensen S (2004) Carotenoids of thermophilic bacteria- Rhodothermus marinus from submarine Icelandic hot springs. Biochem Syst Ecol 32:455–468CrossRefGoogle Scholar
  52. Manelius A, Dahlberg L, Holst O (1994) Some Properties of a thermostable beta-xylosidase from Rhodothermus marinus. Appl Biochem Biotechnol 44:39–48Google Scholar
  53. Martins LO, Empadinhas N, Marugg JD, Miguel C, Ferreira C, da Costa MS, Santos H (1999) Biosynthesis of mannosylglycerate in the thermophilic bacterium Rhodothermus marinus—biochemical and genetic characterization of a mannosylglycerate synthase. J Biol Chem 274:35407–35414CrossRefPubMedGoogle Scholar
  54. Meyer TE (1994) Purification and properties of high-potential iron–sulfur proteins. Methods Enzymol 243:435–448PubMedGoogle Scholar
  55. Moreira L, Nobre MF, SaCorreia I, da Costa MS (1996) Genomic typing and fatty acid composition of Rhodothermus marinus. System Appl Microbiol 19:83–90Google Scholar
  56. Nakagawa T, Fukui M (2002) Phylogenetic characterization of microbial mats and streamers from a Japanese alkaline hot spring with a thermal gradient. J Gen Appl Microbiol 48:211–222PubMedGoogle Scholar
  57. Nordberg Karlsson E, Bartonek-Roxa E, Holst O (1997) Cloning and sequence of a thermostable multidomain xylanase from the bacterium Rhodothermus marinus. Biochim Biophys Acta 1353:118–124PubMedGoogle Scholar
  58. Nordberg Karlsson E, Bartonek-Roxa E, Holst O (1998a) Evidence for substrate binding of a recombinant thermostable xylanase originating from Rhodothermus marinus. FEMS Microbiol Lett 168:1–7CrossRefPubMedGoogle Scholar
  59. Nordberg Karlsson E, Dahlberg L, Torto N, Gorton L, Holst O (1998b) Enzymatic specificity and hydrolysis pattern of the catalytic domain of the xylanase Xyn1 from Rhodothermus marinus. J Biotechnol 60:23–35CrossRefPubMedGoogle Scholar
  60. Nordberg Karlsson E, Holst O, Tocaj A (1999) Efficient production of truncated thermostable xylanases from Rhodothermus marinus in Escherichia coli fed-batch cultures. J Biosci Bioeng 87:598–606CrossRefGoogle Scholar
  61. Nordberg Karlsson E, Abou-Hachem M, Holst O, Danson MJ, Hough DW (2002) Rhodothermus marinus: a thermophilic bacterium producing dimeric and hexameric citrate synthase isoenzymes. Extremophiles 6:51–56CrossRefPubMedGoogle Scholar
  62. Nunes OC, Donato MM, da Costa MM (1992a) Isolation and Characterization of Rhodothermus strains from S-Miguel, Azores. Syst Appl Microbiol 15:92–97Google Scholar
  63. Nunes OC, Donato MM, Manaia CM, da Costa MS (1992b) The polar lipid and fatty acid composition of Rhodothermus strains. Syst Appl Microbiol 15:59–62Google Scholar
  64. Nunes OC, Manaia CM, da Costa MS, Santos H (1995) Compatible solutes in the thermophilic bacteria Rhodothermus marinus and Thermus thermophilus. Appl Environ Microbiol 61:2351–2357Google Scholar
  65. Okumura MS, Kado CI (1992) The region essential for efficient autonomous replication of pSa in Escherichia coli. Mol Gen Genet 235:55–63CrossRefPubMedGoogle Scholar
  66. Pereira MM, Antunes AM, Nunes OC, da Costa MS, Teixeira M (1994) A membrane-bound HIPIP type center in the thermohalophile Rhodothermus marinus. FEBS Lett 352:327–330CrossRefPubMedGoogle Scholar
  67. Pereira MM, Carita JN, Teixeira M (1999a) Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: a novel multihemic cytochrome bc, a new complex III. Biochemistry 38:1268–1275CrossRefPubMedGoogle Scholar
  68. Pereira MM, Carita JN, Teixeira M (1999b) Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: characterization of the iron–sulfur centers from the dehydrogenases and investigation of the high-potential iron–sulfur protein function by in vitro reconstitution of the respiratory chain. Biochemistry 38:1276–1283CrossRefPubMedGoogle Scholar
  69. Pereira MM, Santana M, Soares CM, Mendes J, Carita JN, Fernandes AS, Saraste M, Carrondo MA, Teixeira M (1999c) The caa(3) terminal oxidase of the thermohalophilic bacterium Rhodothermus marinus: a HiPIP: oxygen oxidoreductase lacking the key glutamate of the D-channel. Biochim Biophys Acta 1413:1–13PubMedGoogle Scholar
  70. Pereira MM, Carita JN, Anglin R, Saraste M, Teixeira M (2000a) Heme centers of Rhodothermus marinus respiratory chain Characterization of its cbb(3) oxidase. J Bioenerg Biomembr 32:143–152CrossRefPubMedGoogle Scholar
  71. Pereira MM, Verkhovskaya ML, Teixeira M, Verkhovsky MI (2000b) The caa(3) terminal oxidase of Rhodothermus marinus lacking the key glutamate of the D-channel is a proton pump. Biochemistry 39:6336–6340CrossRefPubMedGoogle Scholar
  72. Pereira MM, Jones KL, Compos MG, Melo AMP, Saraiva LM, Louro RO, Wittung-Stafshede P, Teixeira M (2002) A ferredoxin from the thermohalophilic bacterium Rhodothermus marinus. Biochim Biophys Acta 1601:1–8PubMedGoogle Scholar
  73. Pereira MM, Bandeiras TM, Fernandes AS, Lemos RS, Melo AMP, Teixeira M (2004) Respiratory chains from aerobic thermophilic prokaryotes. J Bioenerg Biomembr 36:93–103CrossRefPubMedGoogle Scholar
  74. Petersen BO, Krah M, Duus JO, Thomsen KK (2000) A transglycosylating 1,3(4)-beta-glucanase from Rhodothermus marinus NMR analysis of enzyme reactions. Eur J Biochem 267:361–369CrossRefPubMedGoogle Scholar
  75. Petursdottir SK, Hreggvidsson GO, Da Costa MS, Kristjansson JK (2000) Genetic diversity analysis of Rhodothermus reflects geographical origin of the isolates. Extremophiles 4:267–274CrossRefPubMedGoogle Scholar
  76. Pfabigan N, Nordberg Karlsson E, Ditzelmueller G, Holst O (2002) Prebleaching of kraft pulp with full-length and truncated forms of a thermostable modular xylanase from Rhodothermus marinus. Biotechnol Lett 24:1191–1197CrossRefGoogle Scholar
  77. Politz O, Krah M, Thomsen KK, Borriss R (2000) A highly thermostable endo-(1,4)-beta-mannanase from the marine bacterium Rhodothermus marinus. Appl Microbiol Biotechnol 53:715–721CrossRefPubMedGoogle Scholar
  78. Ramos A, Raven NDH, Sharp RJ, Bartolucci S, Rossi M, Cannio R, Lebbink J, van der Oost J, de Vos WM, Santos H (1997) Stabilization of enzymes against thermal stress and freeze-drying by mannosylglycerate. Appl Environ Microbiol 63:4020–4025Google Scholar
  79. Reichenbach H (1991) The order Cytophagales. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer-Verlag, New York, pp 3631–3675Google Scholar
  80. Ronka J, Hjorleifsdottir S, Tenkanen T, Pitkanen K, Mattila P, Kristjansson JK (1991) RmaI, a type-II restriction endonuclease from Rhodothermus marinus which recognizes 5′ CTAG 3′. Nucleic Acids Res 19:2789–2789PubMedGoogle Scholar
  81. Sako Y, Takai K, Ishida Y, Uchida A, Katayama Y (1996) Rhodothermus obamensis sp nov, a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46:1099–1104PubMedGoogle Scholar
  82. Santana M, Pereira MM, Elias NP, Soares CM, Teixeira M (2001) Gene cluster of Rhodothermus marinus high-potential iron–sulfur protein: oxygen oxidoreductase, a caa(3)-type oxidase belonging to the superfamily of heme-copper oxidases. J Bacteriol 183:687–699CrossRefPubMedGoogle Scholar
  83. Santos H, da Costa MS (2001) Organic solutes from thermophiles and hyperthermophiles. Methods Enzymol336:302–315PubMedGoogle Scholar
  84. Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509CrossRefPubMedGoogle Scholar
  85. Schulz A, Schumann W (1996) hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol 178:1088–1093PubMedGoogle Scholar
  86. Segal G, Ron EC (1996) Regulation and organization of the groE and dnaK operons in eubacteria. FEMS Microbiol Lett 138:1–10CrossRefPubMedGoogle Scholar
  87. Shinohara ML, Ihara M, Abo M, Hashida M, Takagi S, Beck TC (2001) A novel thermostable branching enzyme from an extremely thermophilic bacterial species, Rhodothermus obamensis. Appl Microbiol Biotechnol 57:653–659CrossRefPubMedGoogle Scholar
  88. Sievert SM, Kuever J, Muyzer G (2000) Identification of 16S ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos island (Greece). Appl Environ Microbiol 66:3102–3109CrossRefPubMedGoogle Scholar
  89. Sigurdson H, Namslauer A, Pereira MM, Teixeira M, Brzezinski P (2001) Ligand binding and the catalytic reaction of cytochrome caa(3) from the thermophilic bacterium Rhodothermus marinus. Biochemistry 40:10578–10585CrossRefPubMedGoogle Scholar
  90. Silva Z, Borges N, Martins LO, Wait R, da Costa MS, Santos H (1999) Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles 3:163–172CrossRefPubMedGoogle Scholar
  91. Silva Z, Horta C, da Costa MS, Chung AP, Rainey FA (2000) Polyphasic evidence for the reclassification of Rhodothermus obamensis Sako et al. 1996 as a member of the species Rhodothermus marinus Alfredsson et al 1988. Int J Syst Evol Microbiol 50:1457–1461PubMedGoogle Scholar
  92. Simpson PJ, Jamieson SJ, Abou-Hachem M, Nordberg Karlsson E, Gilbert HJ, Holst O, Williamson MP (2002) The solution structure of the CBM4-2 carbohydrate binding module from a thermostable Rhodothermus marinus xylanase. Biochemistry 41:5712–5719CrossRefPubMedGoogle Scholar
  93. Soares CM, Baptista AM, Pereira MM, Teixeira M (2004) Investigation of protonatable residues in Rhodothermus marinus caa(3) haem-copper oxygen reductase: comparison with Paracoccus denitrificans aa(3) haem-copper oxygen reductase. J Biol Inorg Chem 9:124–134CrossRefPubMedGoogle Scholar
  94. Spilliaert R, Hreggvidsson GO, Kristjansson JK, Eggertsson G, Palsdottir A (1994) Cloning and sequencing of a Rhodothermus marinus gene, BglA, coding for a thermostable beta-glucanase and its expression in Escherichia coli. Eur J Biochem 224:923–930CrossRefPubMedGoogle Scholar
  95. Takai K, Sako Y, Uchida A (1997a) Extrinsic thermostabilization factors and thermodenaturation mechanisms for phosphoenolpyruvate carboxylase (PEPC) from an extremely thermophilic bacterium Rhodothermus obamensis. J Ferment Bioeng 84:291–299CrossRefGoogle Scholar
  96. Takai K, Sako Y, Uchida A, Ishida Y (1997b) Extremely thermostable phosphoenolpyruvate carboxylase from an extreme thermophile, Rhodothermus obamensis. J Biochem 122:32–40PubMedGoogle Scholar
  97. Takai K, Nunoura T, Sako Y, Uchida A (1998a) Acquired thermotolerance and temperature-induced protein accumulation in the extremely thermophilic bacterium Rhodothermus obamensis. J Bacteriol 180:2770–2774PubMedGoogle Scholar
  98. Takai K, Sako Y, Uchida A (1998b) ppc, the gene for phosphoenolpyruvate carboxylase from an extremely thermophilic bacterium, Rhodothermus obamensis: cloning, sequencing and overexpression in Escherichia coli. Microbiology 144:1423–1434PubMedGoogle Scholar
  99. Thorbjarnardottir SH, Jonsson ZO, Andresson OS, Kristjansson JK, Eggertsson G, Palsdottir A (1995) Cloning and sequence analysis of the DNA ligase-encoding gene of Rhodothermus marinus, and overproduction, purification and characterization of two thermophilic DNA ligases. Gene 161:1–6CrossRefPubMedGoogle Scholar
  100. Thorolfsdottir ET (1999) Heat shock in Rhodothermus marinus. MS Thesis, University of Iceland, IcelandGoogle Scholar
  101. Tindall BJ (1991) Lipid-composition of Rhodothermus marinus. FEMS Microbiol Lett 80:65–68CrossRefGoogle Scholar
  102. Van Driessche G, Vandenberghe I, Devreese B, Samyn B, Meyer TE, Leigh R, Cusanovich MA, Bartsch RG, Fischer U, Van Beeumen JJ (2003) Amino acid sequences and distribution of high-potential iron-sulfur proteins that donate electrons to the photosynthetic reaction center in phototropic proteobacteria. J Mol Evol 57:181–199CrossRefPubMedGoogle Scholar
  103. Wicher KB, Abou-Hachem M, Halldorsdottir S, Thorbjarnadottir SH, Eggertsson G, Hreggvidsson GO, Nordberg Karlsson E, Holst O (2001) Deletion of a cytotoxic, N-terminal putative signal peptide results in a significant increase in production yields in Escherichia coli and improved specific activity of Cel12A from Rhodothermus marinus. Appl Microbiol Biotechnol 55:578–584CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Snaedis H. Bjornsdottir
    • 1
    • 2
  • Thorarinn Blondal
    • 2
  • Gudmundur O. Hreggvidsson
    • 1
    • 2
  • Gudmundur Eggertsson
    • 1
  • Solveig Petursdottir
    • 2
  • Sigridur Hjorleifsdottir
    • 2
  • Sigridur H. Thorbjarnardottir
    • 1
  • Jakob K. Kristjansson
    • 1
    • 2
  1. 1.Institute of BiologyUniversity of IcelandReykjavikIceland
  2. 2.Prokaria LtdReykjavikIceland

Personalised recommendations