Extremophiles

, Volume 9, Issue 4, pp 275–279 | Cite as

How to be moderately halophilic with broad salt tolerance: clues from the genome of Chromohalobacter salexigens

  • Aharon Oren
  • Frank Larimer
  • Paul Richardson
  • Alla Lapidus
  • Laszlo N. Csonka
Original Paper

Abstract

We analyzed the amino acid composition of different categories of proteins of the moderately halophilic bacterium Chromohalobacter salexigens, as deduced from its genome sequence. Comparison with non-halophilic representatives of the γ-Proteobacteria (Escherichia coli, Pseudomonas aeruginosa, Vibrio cholerae) shows only a slight excess of acidic residues in the cytoplasmic proteins, and no significant differences were found in the acidity of membrane-bound proteins. In contrast, a very pronounced difference in mean pI value was observed for the periplasmic binding proteins of the ABC transport systems of C. salexigens and the non-halophiles E. coli and P. aeruginosa. V. cholerae, which is adapted to life in brackish water, showed intermediate values. The findings suggest that there is a major difference between the proteins of the moderate halophile C. salexigens and non-halophilic bacteria in their periplasmic proteins, exemplified by the substrate binding proteins of transport systems. The highly acidic nature of these proteins may enable them to function at high salt concentrations. The evolution of highly salt-tolerant prokaryotes may have depended on an increase in acidity of the proteins located external to the cytoplasmic membrane, enabling effective transport of nutrients into the cell.

Keywords

Chromohalobacter salexigens Halophilic Genome sequence Periplasmic binding proteins Isoelectric point 

Notes

Acknowledgements

We thank Lily Mana for technical assistance.

References

  1. Arahal, DR, García MT, Vargas C, Cánovas D, Nieto JJ, Ventosa A (2001) Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int J Syst Evol Microbiol 51:1457–1462PubMedGoogle Scholar
  2. Bageshwar UK, Premkumar L, Gokhman, I, Savchenko T, Sussman JL, Zamir A (2004) Natural protein engineering: a uniquely salt-tolerant, but not halophilic, α-type carbonic anhydrase from algae proliferating in low- to hyper-saline environments. Protein Eng Design Selection 17:191–200CrossRefGoogle Scholar
  3. Britton KL, Stillman TJ, Yip KSP, Forterre P, Engel PC, Rice DW (1998) Insights into the molecular basis of salt tolerance from the study of glutamate dehydrogenase from Halobacterium salinarum. J Biol Chem 273:9023–9030CrossRefPubMedGoogle Scholar
  4. Cánovas, D, Vargas C, Csonka L, Ventosa A, Nieto JJ (1996) Osmoprotectants in Halomonas elongata: high-affinity betaine transport system and choline-betaine pathway. J Bacteriol 178:7221–7226PubMedGoogle Scholar
  5. Cánovas D, Vargas C, Iglesias-Guerra F, Csonka LN, Rhodes D, Ventosa A, Nieto, JJ (1997) Isolation and characterization of salt-sensitive mutants of the moderate halophile Halomonas elongata and cloning of the ectoine synthesis genes. J Biol Chem 272:25794–25801CrossRefPubMedGoogle Scholar
  6. Cánovas D, Vargas C, Calderón MI, Ventosa A, Nieto JJ (1998) Characterization of the genes for the biosynthesis of the compatible solute ectoine in the moderately halophilic bacterium Halomonas elongata DSM 3043. Syst Appl Microbiol 21:487–497PubMedGoogle Scholar
  7. Dennis PP, Shimmin LC (1997) Evolutionary divergence and salinity-mediated selection in halophilic archaea. Microbiol Mol Biol Rev 61:90–104PubMedGoogle Scholar
  8. Elcock AH, McCammon JA (1998) Electrostatic contribution to the stability of halophilic proteins. J Mol Biol 280:731–748CrossRefPubMedGoogle Scholar
  9. Falkenberg P, Matheson AT, Rollin Cf (1976) The properties of ribosomal proteins from a moderate halophile. Biochim Biophys Acta 434:474–482PubMedGoogle Scholar
  10. Falkenberg P, Yaguchi M, Roy C, Zuker M (1986) The primary structure of the ribosomal A-protein (L12) from the moderate halophile NRCC 41227. Biochem Cell Biol 64:675–680PubMedGoogle Scholar
  11. Fischer M, Gokhman I, Pick U, Zamir A (1996) A salt-resistant plasma membrane carbonic anhydrase is induced by salt in Dunaliella salina. J Biol Chem 271:17718–17723CrossRefPubMedGoogle Scholar
  12. Fischer M, Gokhman I, Pick U, Zamir A (1997) A structurally novel transferrin-like protein accumulates in the plasma membrane of the unicellular green alga Dunaliella salina. J Biol Chem 272:1565–1570CrossRefPubMedGoogle Scholar
  13. Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:273–328Google Scholar
  14. Gandbhir M, Rashed I, Marlière P, Mutzel R (1995) Convergent evolution of amino acid usage in archaebacterial and eubacterial lineages adapted to high salt. Res Microbiol 146:113–120CrossRefPubMedGoogle Scholar
  15. Imhoff JF, Kushner DJ, Anderson PJ (1983) Amino acid composition of proteins in halophilic phototrophic bacteria of the genus Ectothiorhodospira. Can J Microbiol 29:1675–1679Google Scholar
  16. Kushner DJ (1978) Life in high salt and solute concentrations: halophilic bacteria. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 317–368Google Scholar
  17. Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290PubMedGoogle Scholar
  18. Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98CrossRefPubMedGoogle Scholar
  19. Matheson AT, Yaguchi M, Nazar RN, Visentin LP, Willick GE (1978) The structure of ribosomes from moderate and extreme halophilic bacteria. In: Caplan SR, Ginzburg M (eds) Energetics and structure of halophilic microorganisms. Elsevier/North Holland Biomedical Press, Amsterdam, pp 481–500Google Scholar
  20. Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164CrossRefPubMedGoogle Scholar
  21. Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J. Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP. Angevine CM, Dale H, Isenberger TA, Peck RF, Pohlschroder M, Spudich JL, Jong K-H, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci USA 97:12176–12181CrossRefPubMedGoogle Scholar
  22. Oren A (1986) Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can J Microbiol 32:4–9Google Scholar
  23. Oren A (1995) Comment on “Convergent evolution of amino acid usage in archaebacterial and eubacterial lineages adapted to high salt”, by M Gandbhir et al (Res Microbiol 1995, 146, 113–120). Res Microbiol 146:805–806CrossRefPubMedGoogle Scholar
  24. Oren A (2002) Halophilic microorganisms and their environments. Kluwer, DordrechtGoogle Scholar
  25. Oren A, Heldal M, Norland, Galinski EA (2002) Intracellular ion and organic solute concentrations of the extremely halophilic Bacterium Salinibacter ruber. Extremophiles 6:491–498CrossRefPubMedGoogle Scholar
  26. Reistad R (1970) On the composition and nature of the bulk protein of extremely halophilic bacteria. Arch Microbiol 71:353–360Google Scholar
  27. Tokunaga H, Mitsuo K, Kamekura M, Tokunaga M (2004) Major outer membrane proteins in moderately halophilic eubacteria of the genera Chromohalobacter and Halomonas. J Basic Microbiol 44:232–240CrossRefPubMedGoogle Scholar
  28. Ventosa A., Gutierrez MC, Garcia MT, Ruiz-Berraquero F (1989) Classification of “ Chromobacterium marismortui” in a new genus, Chromohalobacter gen nov, as Chromohalobacter marismortui comb nov, nom rev. Int J Syst Bacteriol 39:382–386Google Scholar
  29. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544PubMedGoogle Scholar
  30. Wydro R, Kogut M, Kushner DJ (1975) Salt response of ribosomes of a moderately halophilic bacterium. FEBS Lett 60:210–215CrossRefPubMedGoogle Scholar
  31. Wydro RM, Madira W, Hiramatsu T, Kogut M, Kushner DJ (1977) Salt-sensitive in vitro protein synthesis by a moderately halophilic bacterium. Nature 269:824–825PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Aharon Oren
    • 1
  • Frank Larimer
    • 2
  • Paul Richardson
    • 3
  • Alla Lapidus
    • 3
  • Laszlo N. Csonka
    • 4
  1. 1.The Institute of Life Sciences, and the Moshe Shilo Minerva Center for Marine BiogeochemistryThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Genome Analysis and Systems Modeling, Life Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.DOE Joint Genome InstituteWalnut CreekUSA
  4. 4.Department of Biological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations