, Volume 9, Issue 3, pp 219–227 | Cite as

Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation

  • Molly Kottemann
  • Adrienne Kish
  • Chika Iloanusi
  • Sarah Bjork
  • Jocelyne DiRuggieroEmail author
Original Paper


We report that the halophilic archaeon Halobacterium sp. strain NRC-1 is highly resistant to desiccation, high vacuum and 60Co gamma irradiation. Halobacterium sp. was able to repair extensive double strand DNA breaks (DSBs) in its genomic DNA, produced both by desiccation and by gamma irradiation, within hours of damage induction. We propose that resistance to high vacuum and 60Co gamma irradiation is a consequence of its adaptation to desiccating conditions. Gamma resistance in Halobacterium sp. was dependent on growth stage with cultures in earlier stages exhibiting higher resistance. Membrane pigments, specifically bacterioruberin, offered protection against cellular damages induced by high doses (5 kGy) of gamma irradiation. High-salt conditions were found to create a protective environment against gamma irradiation in vivo by comparing the amount of DSBs induced by ionizing radiation in the chromosomal DNA of Halobacterium sp. to that of the more radiation-sensitive Escherichia coli that grows in lower-salt conditions. No inducible response was observed after exposing Halobacterium sp. to a nonlethal dose (0.5 kGy) of gamma ray and subsequently exposing the cells to either a high dose (5 kGy) of gamma ray or desiccating conditions. We find that the hypersaline environment in which Halobacterium sp. flourishes is a fundamental factor for its resistance to desiccation, damaging radiation and high vacuum.


Halophiles Ionizing radiation Desiccation Double-strand breaks DNA repair 



Double-strand breaks


Reactive oxygen species


Ethyl methanesulfonate





This work was supported by grants from NASA (#NCC9147), and the HFSP (#RG522002). We would like to thank Vince Adams for his technical assistance irradiating the cells and Marvin Swartz for high vacuum exposure.


  1. Bala M, Jain V (1996) 2-DG induced modulation of chromosomal DNA profile, cell survival, mutagenesis and gene conversion in X-irradiated yeast. Indian J Exp Biol 34(1):18–26Google Scholar
  2. Baliga NS, Bjork SJ, Bonneau R, Pan M, Iloanusi C, Kottemann MC, Hood L, DiRuggiero J (2004) Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC −1. Genome Res 14(6):1025–1035 [Epub 2004 May 12]Google Scholar
  3. Battista JR, Earl AM, Park MJ (1999) Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol 7:362–365Google Scholar
  4. Billi D, Friedmann EI, Hofer KG, Caiola MG, Ocampo-Friedmann R (2000) Ionizing-radiation resistance in the desiccation-tolerant Cyanobacterium Chroococcidiopsis. Appl Environ Microbiol 66(4):1489–1492Google Scholar
  5. Blaisdell JO, Wallace SS (2001) Abortive base-excision repair of radiation-induced clustered DNA lesions in Escherichia coli. PNAS USA 98(13):7426–7430Google Scholar
  6. Carbonneau MA, Melin AM, Perromat A, Clerc M (1989) The action of free radicals on Deinococcus radiodurans carotenoids. Arch Biochem Biophys 275(1):244–251Google Scholar
  7. Clavero MRS, Monk JD, Beuchat LR, Doyle MP, Brackett RE (1994) Inactivation of Escherichia coli 0157:H7, Salmonellae, and Campylobacter jejuni in raw ground beef by gamma irradiation. Appl Environ Microbiol 60(6):2069–2075Google Scholar
  8. Constantinesco F, Forterre P, Koonin E, Aravind L, Elie C (2004) A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. Nucleic Acids Res 32:1439–1447Google Scholar
  9. Crawford DR, Davies KJ (1994) Adaptive response and oxidative stress. Environ Health Perspect 102(Suppl)10:25–28Google Scholar
  10. Daly MJ, Ouyang L, Fuchs P, Minton KW (1994) In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol 176(12):3508–3517Google Scholar
  11. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A, Hess M, Omelchenko MV, Kostandarithes HM, Makarova KS, Wackett LP, Fredrickson JK, Ghosal D (2004) Sep 30 Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science [Epub ahead of print]Google Scholar
  12. Della M, Palmbos PL, Tseng H-M, Tonkin LM, Daley JM, Topper LM, Pitcher RS, Tomkinson AE, Wilson TE, Doherty AJ (2004) Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science 360:683–685Google Scholar
  13. Dianov GL, O’Neill P, Goodhead DT (2001) Securing genome stability by orchestrating DNA repair: removal of radiation-induced clustered lesions in DNA. BioEssays 23:745–749Google Scholar
  14. DiRuggiero J, Santangelo N, Nackerdien Z, Ravel J, Robb FT (1997) Repair of extensive ionizing-radiation DNA damage at 95°C in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 179:4643–4645Google Scholar
  15. DiRuggiero J, Brown JR, Bogert AP, Robb FT (1999) DNA repair systems in Archaea: mementos from the last universal common ancestor? J Mol Evol 49:474–484Google Scholar
  16. Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417(6887):432–436Google Scholar
  17. Gerard E, Jolivet E, Prieur D, Forterre P (2001) DNA protection mechanisms are not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and P. furiosus. Mol Genet Genomics 266(1):72–78Google Scholar
  18. van Gerwen SJ, Rombouts FM, van’t Riet K, Zwietering MH (1999) A data analysis of the irradiation parameter D10 for bacteria and spores under various conditions. J Food Prot 62(9):1024–1032Google Scholar
  19. Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Hans-Jürgen B Helga S-L (2004) Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles [E-pub 30 July 2004]Google Scholar
  20. Gutman PD, Carroll JD, Masters CI, Minton KW (1994) Sequencing, targeted mutagenesis and expression of a recA gene required for the extreme radioresistance of Deinococcus radiodurans. Gene 141:31–37Google Scholar
  21. Holden JF, Baross JA (1993) Enhanced thermotolerance and temperature-induced changes in protein composition in the hyperthermophilic archaeon ES4. J Bacteriol 175:2839–2843Google Scholar
  22. Hopfner KP, Karcher A, Shin D, Fairley C, Tainer JA, Carney JP (2000) Mre11 and Rad50 from Pyrococcus furiosus: cloning and biochemical characterization reveal an evolutionarily conserved multiprotein machine. J Bacteriol 182(21):6036–6041Google Scholar
  23. Hubmacher D, Matzanke BF, Anemuller S (2002) Investigations of iron uptake in Halobacterium salinarum. Biochem Soc Trans 4:710–712Google Scholar
  24. Jolivet E, L’Haridon S, Corre E, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53(3):847–851Google Scholar
  25. Jolivet E, Corre E, L’Haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8(3):219–227. [Epub 2004 Feb 27]Google Scholar
  26. Keller LC, Maxcy RB (1984) Effect of physiological age on radiation resistance of some bacteria that are highly radiation resistant. Appl Environ Microbiol 47(5):915-918Google Scholar
  27. Koike J, Oshima T, Koike KA, Taguchi H, Tanaka R, Nishimura K, Miyaji M (1992) Survival rates of some terrestrial microorganisms under high conditions. Adv Space Res 12(4):271–274Google Scholar
  28. Komori K, Miyata T, DiRuggiero J, Holley-Shanks R, Hayashi I, Cann IK, Mayanagi K, Shinagawa H, Ishino Y (2000a) Both RadA and RadB are involved in homologous recombination in Pyrococcus furiosus. J Biol Chem 275(43):33782–33790Google Scholar
  29. Komori K, Sakae S, Fujikane R, Morikawa K, Shinagawa H, Ishino Y (2000b) Biochemical characterization of the Hjc Holliday junction resolvase of Pyrococcus furiosus. Nucleic Acids Res 28(22):4544–4551Google Scholar
  30. Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol. Rev 38:272–290Google Scholar
  31. Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65(1):44–79Google Scholar
  32. Mancinelli RL, White MR, Rothschild LJ (1998) Biopan-survival I: Exposure of the Osmophiles Synechococcus Sp. (Nageli) and Haloarcula Sp. to the space environment. Adv Space Res 22:327Google Scholar
  33. Marguet E, Forterre P (1998) Protection of DNA by salts against thermodegradation at temperatures typical for hyperthermophiles. Extremophiles 2(2):115–122Google Scholar
  34. Martin EL, Reinhardt RL, Baum LL, Becker MR, Shaffer JJ, Kokjohn TA (2000) The effects of ultraviolet radiation on the moderate halophile Halomonas elongata and the extreme halophile Halobacterium salinarum. Can J Microbiol 46(2):180–187Google Scholar
  35. Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178(3):633–637Google Scholar
  36. McCready S (1996) The repair of ultraviolet light-induced DNA damage in the halophilic archaebacteria, Halobacterium cutirubrum, Halobacterium halobium and Haloferax volcanii. Mutat Res 364(1):25–32Google Scholar
  37. McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2(3):243–50Google Scholar
  38. Minton KW, Daly MJ (1995) A model for repair of radiation-induced DNA double-strand breaks in the extreme radiophile Deinococcus radiodurans. BioEssays 17(5):457–464Google Scholar
  39. Moseley BEB (1983) Photobiology and radiobiology of Micrococcus (Deinococcus) radiodurans. Photochem Photobiol Rev 7:223–275Google Scholar
  40. Ng WL, Yang CF, Halladay JT, Arora P, DasSarma S (1995) Protocol 25: isolation of genomic and plasmid DNAs from Halobacterium halobium. In: Robb FT, Place AR, Sowers KR, Schreier HJ, DasSarma S, Fleischmann EM (eds) Archaea: a laboratory manual. Cold Spring Harbor Laboratory Press, Newyork pp 179–180Google Scholar
  41. Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga N, Thorsson V, Sbrogna J, Swartzell S, Weir D, Gall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschrod M, Spudich JL, Jung KH, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omar AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S (1997) Genome sequence of Halobacterium species NRC-1. PNAS USA 22:12176–12181Google Scholar
  42. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64(3):548–572Google Scholar
  43. Peck RF, DasSarma S, Krebs MP (2000) Homologous gene knockout in the archaeon Halobacterium salinarium with ura3 as a counterselectable marker. Mol Micro 35(3):667–676Google Scholar
  44. Potts M (1994) Desiccation tolerance of Prokaryotes. Microbiol Rev 58(4):755–805Google Scholar
  45. Rieder R, Gellert R, Anderson RC, Bruckner J, Clark BC, Dreibus G, Economou T, Klingelhofer G, Lugmair GW, Ming DW, Squyres SW, d’Uston C, Wanke H, Yen A, Zipfel J (2004) Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer. Science 306(5702):1746–1749Google Scholar
  46. Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65(1):27–33Google Scholar
  47. Saffary R, Nandakumar R, Spencer D, Robb FT, Davila JM, Swartz M, Ofman L, Thomas RJ, DiRuggiero J (2002) Microbial survival of space vacuum and extreme ultraviolet irradiation: strain isolation and analysis during a rocket flight. FEMS Microbiol Lett 215(1):163–168Google Scholar
  48. Salin MN, Brown-Peterson NJ (1993) Dealing with active oxygen intermediates: a halophilic perspective. Experientia 49:523-529Google Scholar
  49. Shahmohammadi HR, Asgarani E, Terato H, Saito T, Ohyama Y, Gekko K, Yamamoto O, Ide H (1998) Protective roles of bacterioruberin and intracellular KCL resistance of Halobacterium salinarium against DNA-damaging agents. J Radiat Res 39:251–262Google Scholar
  50. Trent JD, Gabrielsen M, Jensen B, Neuhard J, Olsen J (1994) Acquired thermotolerance and heat shock proteins in thermophiles from the three phylogenetic domains. J Bacteriol 176:6148–6152Google Scholar
  51. Ulsh BA, Miller SM, Mallory FF, Mitchel RE, Morrison DP, Boreham DR (2004) Cytogenetic dose–response and adaptive response in cells of ungulate species exposed to ionizing radiation. J Environ Radioact 74(1–3):73–81Google Scholar
  52. Vreeland RH, Rosenzweig WD (2002) The question of uniqueness of ancient bacteria. J Ind Microbiol Biotechnol 28(1):32–41Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Molly Kottemann
    • 1
  • Adrienne Kish
    • 1
  • Chika Iloanusi
    • 1
  • Sarah Bjork
    • 1
  • Jocelyne DiRuggiero
    • 1
    • 2
    Email author
  1. 1.Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUSA
  2. 2.Center of Marine BiotechnologyUniversity of Maryland Biotechnology InstituteBaltimoreUSA

Personalised recommendations