Advertisement

Extremophiles

, Volume 9, Issue 2, pp 169–184 | Cite as

Bacterial community shift along a subsurface geothermal water stream in a Japanese gold mine

  • Hisako HirayamaEmail author
  • Ken Takai
  • Fumio Inagaki
  • Yu Yamato
  • Masae Suzuki
  • Kenneth H. Nealson
  • Koki Horikoshi
Original Paper

Abstract

Change of bacterial community occurring along a hot water stream in the Hishikari gold mine, Japan, was investigated by applying a combination of various culture-independent techniques. The stream, which is derived from a subsurface anaerobic aquifer containing plentiful CO2, CH4, H2, and NH 4 + , emerges in a mine tunnel 320 m below the surface providing nutrients for a lush microbial community that extends to a distance of approximately 7 m in the absence of sunlight-irradiation. Over this distance, the temperature decreases from 69°C to 55°C, and the oxidation-reduction potential increases from −130 mV to +59 mV. In the hot upper reaches of the stream, the dominant phylotypes were: 1) a deeply branching lineage of thermophilic methane-oxidizing γ-Proteobacteria, and 2) a thermophilic hydrogen- and sulfur-oxidizing Sulfurihydrogenibium sp. In contrast, the prevailing phylotypes in the middle and lower parts of the stream were closely related to ammonia-oxidizing Nitrosomonas and nitrite-oxidizing Nitrospira spp.. Changes in the microbial metabolic potential estimated by competitive PCR analysis of genes encoding the enzymes, particulate methane monooxygenase (pmoA), ammonia monooxygenase (amoA), and putative nitrite oxidoreductase (norB), also substantiated the community shift indicated by 16S rRNA gene analysis. The diversity of putative norB lineages was assessed for the first time in the hot water environment. Estimation of dominant phylotypes by whole-cell fluorescent in situ hybridization and changes in inorganic nitrogen compounds such as decreasing ammonium and increasing nitrite and nitrate in the mat-interstitial water along the stream were consistent with the observed transition of the bacterial community structure in the stream.

Keywords

Methane-oxidizer Ammonia-oxidizer Nitrite-oxidizer Aquificales Subsurface 

Notes

Acknowledgments

We are grateful to the management of the Sumitomo Metal Mining Co. Ltd. for its cooperation in and understanding of our research.

References

  1. Alfreider A, Pernthaler J, Amann R, Sattler B, Glockner F, Wille A, Psenner R (1996) Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl Environ Microbiol 62:2138–2144Google Scholar
  2. Allen SE, Grimshaw HM, Parkinson JA, Quarmby C (1974) Inorganic constituents: nitrogen. In: Allen SE (ed) Chemical analysis of ecological materials. Blackwell Scientific Publications, London, pp 184–206Google Scholar
  3. Bedard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84Google Scholar
  4. Bodrossy L, Kovács KL, McDonald IR, Murrell JC (1999) A novel thermophilic methane-oxidising γ-Proteobacterium. FEMS Microbiol Lett 170:335–341Google Scholar
  5. Bruins ME, Janssen AE, Boom RM (2001) Thermozymes and their applications: a review of recent literature and patents. Appl Biochem Biotechnol 90:155–186Google Scholar
  6. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443CrossRefPubMedGoogle Scholar
  7. Costello AM, Lidstrom ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074PubMedGoogle Scholar
  8. Dionisi HM, Layton AC, Harms G, Gregory IR, Robinson KG, Sayler GS (2002) Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp from full-scale wastewater treatment plants by competitive PCR. Appl Environ Microbiol 68:245–253Google Scholar
  9. Ehrich S, Behrens D, Lebedeva E, Ludwig W, Bock E (1995) A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp nov and its phylogenetic relationship. Arch Microbiol 164:16–23CrossRefPubMedGoogle Scholar
  10. Ferris MJ, Ward DM (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1375–1381Google Scholar
  11. Hayashi NR, Ishida T, Yokota A, Kodama T, Igarashi Y (1999) Hydrogenophilus thermoluteolus gen nov, sp nov, a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 2:783–786Google Scholar
  12. Hiraishi A, Umezawa T, Yamamoto H, Kato K, Maki Y (1999) Changes in quinone profiles of hot spring microbial mats with a thermal gradient. Appl Environ Microbiol 65:198–205PubMedGoogle Scholar
  13. Hirota R, Yamagata A, Kato J, Kuroda A, Ikeda T, Takiguchi N, Ohtake H (2000) Physical map location of the multicopy genes coding for ammonia monooxygenase and hydroxylamine oxidoreductase in the ammonia-oxidizing bacterium Nitrosomonas sp strain ENI-11. J Bacteriol 182:825–828Google Scholar
  14. Holmes AJ, Costello A, Lidstrom ME, Murrell JC (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208Google Scholar
  15. Hommes NG, Sayavedra-Soto LA, Arp DJ (1998) Mutagenesis and expression of amo, which codes for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol 180:3353–3359Google Scholar
  16. Hooper AB, Terry KR (1974) Photoinactivation of ammonia oxidation in Nitrosomonas. J Bacteriol 119:899–906PubMedGoogle Scholar
  17. Huber H, Stetter KO (1998) Hyperthermophiles and their possible potential in biotechnology. J Biotechnol 64:39–52CrossRefGoogle Scholar
  18. Huber R, Huber H, Stetter KO (2000) Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol Rev 24:615–623Google Scholar
  19. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376PubMedGoogle Scholar
  20. Inagaki F, Takai K, Hirayama H, Yamato Y, Nealson KH, Horikoshi K (2003) Distribution and phylogenetic diversity of the subsurface microbial community in a Japanese epithermal gold mine. Extremophiles 7:307–317Google Scholar
  21. Izawa E, Urashima Y, Ibaraki K, Suzuki R, Yokoyama T, Kawasaki K, Koga A, Taguchi S (1990) The Hishikari gold deposit: high-grade epithermal veins in Quaternary volcanics of southern Kyushu, Japan. J Geochem Explor 36:1–56Google Scholar
  22. Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li SW, Plymale AE, Spadoni CM, Gray MS (1999) Dissimilatory reduction of Fe (III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221Google Scholar
  23. Kirstein K, Bock E (1993) Close genetic relationship between Nitrobacter hamburgensis nitrite oxidoreductase and Escherichia coli nitrate reductases. Arch Microbiol 160:447–453Google Scholar
  24. Kurosawa N, Itoh YH, Iwai T, Sugai A, Uda I, Kimura N, Horiuchi T, Itoh T (1998) Sulfurisphaera ohwakuensis gen nov, sp nov, a novel extremely thermophilic acidophile of the order Sulfolobales. Int J Syst Bacteriol 2:451–456Google Scholar
  25. Lane DJ (1991) 16S/23S sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley & Sons, New York, pp 115–175Google Scholar
  26. Manz W, Szewzyk U, Ericsson P, Amann R, Schleifer KH, Stenstrom TA (1993) In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl Environ Microbiol 59:2293–2298Google Scholar
  27. Marteinsson VT, Hauksdóttir S, Hobel CFV, Kristmannsdóttir H, Hreggvidsson GO, Kristjánsson JK (2001) Phylogenetic diversity analysis of subterranean hot springs in Iceland. Appl Environ Microbiol 67:4242–4248Google Scholar
  28. McTavish H, Fuchs JA, Hooper AB (1993) Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol 175:2436–2444PubMedGoogle Scholar
  29. Norton JM, Alzerreca JJ, Suwa Y, Klotz MG (2002) Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch Microbiol 177:139–149CrossRefPubMedGoogle Scholar
  30. Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops H-P, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA Sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382CrossRefPubMedGoogle Scholar
  31. Reysenbach AL, Wickham GS, Pace NR (1994) Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60:2113–2119Google Scholar
  32. Reysenbach AL, Ehringer M, Hershberger K (2000) Microbial diversity at 83°C in calcite springs, Yellowstone National Park: another environment where the Aquificales and “Korarchaeota” coexist. Extremophiles 4:61–67Google Scholar
  33. Ruff-Roberts AL, Kuenen JG, Ward DM (1994) Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats. Appl Environ Microbiol 60:697–704Google Scholar
  34. Schramm A, de Beer D, Wagner M, Amann R (1998) Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl Environ Microbiol 64:3480–3485Google Scholar
  35. Semrau JD, Chistoserdov A, Lebron J, Costello A, Davagnino J, Kenna E, Holmes AJ, Finch R, Murrell JC, Lidstrom ME (1995) Particulate methane monooxygenase genes in methanotrophs. J Bacteriol 177:3071–3079PubMedGoogle Scholar
  36. Shears JH, Wood PM (1985) Spectroscopic evidence for a photosensitive oxygenated state of ammonia mono-oxygenase. Biochem J 226:499–507Google Scholar
  37. Skirnisdottir S, Hreggvidsson GO, Hjörleifsdottir S, Marteinsson VT, Petursdottir SK, Holst O, Kristjansson JK (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841Google Scholar
  38. Stetter KO (1999) Extremophiles and their adaptation to hot environments. FEBS Lett 452:22–25Google Scholar
  39. Stolyar S, Costello AM, Peeples TL, Lidstrom ME (1999) Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology 145:1235–1244PubMedGoogle Scholar
  40. Takacs CD, Ehringer M, Favre R, Cermola M, Eggertsson G, Palsdottir A, Reysenbach AL (2001) Phylogenetic characterization of the blue filamentous bacterial community from an Icelandic geothermal spring. FEMS Microbiol Ecol 35:123–128Google Scholar
  41. Takai K, Komatsu T, Horikoshi K (2001) Hydrogenobacter subterraneus sp nov, an extremely thermophilic, heterotrophic bacterium unable to grow on hydrogen gas, from deep subsurface geothermal water. Int J Syst Evol Microbiol 51:1425–1435PubMedGoogle Scholar
  42. Takai K, Hirayama H, Sakihama Y, Inagaki F, Yamato Y, Horikoshi K (2002) Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl Environ Microbiol 68:3046–3054Google Scholar
  43. Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003) Sulfurihydrogenibium subterraneum gen nov, sp nov, from a subsurface hot aquifer. Int J Syst Evol Microbiol 53:823–827Google Scholar
  44. Ward DM, Ferris MJ, Nold SC, Bateson MM (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370PubMedGoogle Scholar
  45. Weller R, Bateson MM, Heimbuch BK, Kopczynski ED, Ward DM (1992) Uncultivated cyanobacteria, Chloroflexus-like inhabitants, and spirochete-like inhabitants of a hot spring microbial mat. Appl Environ Microbiol 58:3964–3969Google Scholar
  46. Yamamoto H, Hiraishi A, Kato K, Chiura HX, Maki Y, and Shimizu A (1998) Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan. Appl Environ Microbiol 64:1680–1687Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Hisako Hirayama
    • 1
    Email author
  • Ken Takai
    • 1
  • Fumio Inagaki
    • 1
  • Yu Yamato
    • 2
  • Masae Suzuki
    • 1
  • Kenneth H. Nealson
    • 1
    • 3
  • Koki Horikoshi
    • 1
  1. 1.Subground Animalcule Retrieval (SUGAR) Project, Extremobiosphere Research CenterJapan Agency for Marine-Earth Science & Technology (JAMSTEC)YokosukaJapan
  2. 2.Hishikari MineSumitomo Metal Mining Co LtdHishikari-choJapan
  3. 3.Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations