Advertisement

Extremophiles

, Volume 9, Issue 1, pp 85–89 | Cite as

Organic solvent tolerance of halophilic α-amylase from a Haloarchaeon, Haloarcula sp. strain S-1

  • Tadamasa Fukushima
  • Toru Mizuki
  • Akinobu Echigo
  • Akira Inoue
  • Ron Usami
Note

Abstract

A halophilic archaeon, Haloarcula sp. strain S-1, produced extracellular organic solvent-tolerant α-amylase. Molecular mass of the enzyme was estimated to be 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This amylase exhibited maximal activity at 50°C in buffer containing 4.3 M NaCl, pH 7.0. Moreover, the enzyme was active and stable in various organic solvents (benzene, toluene, and chloroform, etc.). Activity was not detected at low ionic strengths, but it was detected in the presence of chloroform at low salt concentrations. On the other hand, no activity was detected in the presence of ethyl alcohol and acetone.

Keywords

Haloarcula sp. strain S-1 Halophilic α-amylase Halophilic archaea Organic solvent tolerance Purification 

Notes

Acknowledgements

Part of this study has been supported by a grant for the 21st Century’s Center of Excellence Programs organized by the Ministry of Education, Culture, Sports, Science and Technology, Japan, since 2003.

References

  1. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  2. Danson MJ, Hough DW (1997) The structural basis of halophilicity. Comp Biochem Physiol 3:307–312CrossRefGoogle Scholar
  3. Doukyu N, Kuwahara H, Aono R (2003) Isolation of Paenibacillus illinoisensis that produces cyclodextrin glucanotransferase resistant to organic solvents. Biosci Biotechnol Biochem 67:334–340CrossRefPubMedGoogle Scholar
  4. Dym O, Mevarech M, Sussman JL (1995) Structural features that stabilize halophilic malate dehydrogenase from archaebacterium. Science 267:1344–1346Google Scholar
  5. Haseltine C, Rolfsmeier M, Blum P (1996) The glucose effect and regulation of the α-amylase synthesis in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 4:945–950Google Scholar
  6. Inoue A, Horikoshi K (1991) Estimation of solvent-tolerance of bacteria by solvent parameter log P. J Ferment Bioeng 71:194–196CrossRefGoogle Scholar
  7. Janecek S, Leveque E, Belarbi A, Haye B (1999) Close evolutionary relatedness of α-amylase from archaea and plants. J Mol Evol 48:421–426PubMedGoogle Scholar
  8. Juez G, Rodriguez-Valera F, Ventosa A, Kushner DJ (1986) Haloarcula hispanica spec. nov. and Haloferax gibbonsii spec. nov., two new species of extremely halophilic archaebacteria. Syst Appl Microbiol 8:75–79Google Scholar
  9. Kadziola A, Søgaard M, Svensson B (1998) Molecular structure of a barley α-amylase-inhibitor complex: implications for starch binding and catalysis. J Mol Biol 278:205–217CrossRefPubMedGoogle Scholar
  10. Kamekura M, Dyall-Smith ML (1995) Taxonomy of the family Halobacteriaceae and the description of two genera Halorubrobacterium and Natrialba. J Gen Appl Microbiol 41:333–350Google Scholar
  11. Kamekura M, Seno Y (1990) A halophilic extracellular protease from a halophilic archaebacterium strain 172 P1. Biochem Cell Biol 68:352–359PubMedGoogle Scholar
  12. Kanai H, Kobayashi T, Aono R, Kudo T (1995) Natronococcus amylolyticus sp. nov., a haloalkaliphilic archaeon. Int J Syst Bacteriol 45:762–766PubMedGoogle Scholar
  13. Kobayashi K, Kanai H, Hayashi T, Akiba T, Akaboshi R, Horikoshi K (1992) Haloalkaliphilic maltotriose-forming α-amylase from the archaebacterium Natronococcus sp. strain Ah-36. J Bacteriol 174:3439–3444PubMedGoogle Scholar
  14. Kobayashi K, Kanai H, Aono R, Horikoshi K, Kudo T (1994) Cloning, expression, and nucleotide sequence of the α-amylase gene from the haloalkaliphilic archaeon Natronococcus sp. strain Ah-36. J Bacteriol 176:5131–5134PubMedGoogle Scholar
  15. Machius M, Wiegand G, Huber R (1995) Crystal structure of calcium depleted Bacillus lincheniformis α-amylase at 2.2 Å resolution. J Mol Biol 246:545–559CrossRefPubMedGoogle Scholar
  16. Mardern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98CrossRefPubMedGoogle Scholar
  17. Marhuenda-Egea FC, Bonete MJ (2002) Extreme halophilic enzymes in organic solvents. Curr Opin Biotechnol 13:385–389CrossRefPubMedGoogle Scholar
  18. Ogino H, Miyamoto K, Yasuda M, Ishimi K, Ishikawa H (1999a) Growth of organic solvent-tolerant Pseudomonas aeruginosa LST-03 in the presence of various organic solvents and production of lipolytic enzyme in the presence of cyclohexane. Biochem Eng J 4:1–6CrossRefGoogle Scholar
  19. Ogino H, Yamada M, Watanabe F, Ichinose H, Yasuda M, Ishikawa H (1999b) Peptide synthesis catalyzed by organic solvent-stable protease from Pseudomonas aeruginosa PST-01 in monophasic aqueous-organic solvent systems. J Biosci Bioeng 88:513–518CrossRefGoogle Scholar
  20. Perez-Pomares F, Bautista V, Ferrer J, Pire C, Marhuenda-Egea FC, Bonete MJ (2003) α-Amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7:299–306CrossRefPubMedGoogle Scholar
  21. Rodriguez-Valera F, Juez G, Kushner DJ (1983) Halobacterium mediterranei spec. nov., a new carbohydrate-utilizing extreme halophile. Syst Appl Microbiol 4:369–387Google Scholar
  22. Usami R, Fukushima T, Mizuki T, Inoue A, Yoshida Y, Horikoshi K (2003) Organic solvent tolerance of halophilic archaea. Biosci Biotechnol Biochem 67:1809–1812CrossRefPubMedGoogle Scholar
  23. Vihinen M, Mäntsälä P (1989) Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol 24:329–418PubMedGoogle Scholar
  24. Zviagintseva IS, Beliaev SS, Borzenkov IA, Kostrikina NA, Milekhina EI, Ivanov MV (1995) Halophilic archaebacteria from the Kalamkass oilfield. Mikrobiologiia 64:83–87PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Tadamasa Fukushima
    • 1
    • 2
  • Toru Mizuki
    • 1
  • Akinobu Echigo
    • 1
    • 2
  • Akira Inoue
    • 1
    • 2
  • Ron Usami
    • 1
    • 2
  1. 1.Department of Applied Chemistry, Faculty of EngineeringToyo UniversityKawagoe, Saitama 350-8585Japan
  2. 2.Bio-Nano Electronics Research CenterToyo UniversityKawagoe, Saitama 350-8585Japan

Personalised recommendations