Advertisement

Extremophiles

, Volume 9, Issue 1, pp 17–27 | Cite as

Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program Site 1200 at South Chamorro Seamount, Mariana Forearc

  • Ken TakaiEmail author
  • Craig L. Moyer
  • Masayuki Miyazaki
  • Yuichi Nogi
  • Hisako Hirayama
  • Kenneth H. Nealson
  • Koki Horikoshi
Original Paper

Abstract

Novel alkaliphilic, mesophilic bacteria were isolated from subseafloor alkaline serpentine mud from the Ocean Drilling Program (ODP) Hole 1200D at a serpentine mud volcano, South Chamorro Seamount in the Mariana Forearc. The cells of type strain ODP1200D-1.5T were motile rods with a single polar flagellum. Growth was observed between 10 and 45–50°C (optimum temperature: 30–35°C, 45-min doubling time), between pH 6.5 and 10.8–11.4 (optimum: pH 8.5–9.0), and between NaCl concentrations of 0 and 21% (w/v) (optimum NaCl concentration: 2.5–3.5%). The isolate was a facultatively anaerobic heterotroph utilizing various complex substrates, hydrocarbons, carbohydrates, organic acids, and amino acids. Nitrate or fumarate could serve as an electron acceptor to support growth under anaerobic conditions. The G+C content of the genomic DNA was 57.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belonged to the genus Marinobacter and was the most closely related to M. aquaeolei strain VT8T and M. hydrocarbonoclasticus strain SP.17T, while DNA–DNA hybridization demonstrated that the new isolate could be genetically differentiated from the previously described species of Marinobacter. Based on the physiological and molecular properties of the new isolate, we propose the name Marinobacter alkaliphilus sp. nov., type strain: ODP1200D-1.5T (JCM12291T and ATCC BAA-889T).

Keywords

Alkaliphilic Facultatively anaerobic Ocean Drilling Program Serpentine mud Subseafloor biosphere 

Notes

Acknowledgements

We would like to thank Mr. Katsuyuki Uematsu for assistance in preparing electron micrographs. We are very grateful to the clues of DSDV Joides Resolution and the staff scientists of the ODP Leg 195 for helping us to collect subseafloor core samples. This research was funded in part by the US Science Support Program of ODP and by a summer research grant from Western Washington University (to Moyer).

References

  1. Al-Mallah M, Goutx M, Mille G, Bertrand JC (1990) Production of emulsifying agents during growth of a marine Alteromonas in seawater with eicosane as carbon source, a solid hydrocarbon. Oil Chem Pollut 6:289–305Google Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedGoogle Scholar
  3. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589PubMedGoogle Scholar
  4. Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, Parkes RJ (1997) Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521PubMedGoogle Scholar
  5. Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BFF (1998) GenBank. Nucleic Acids Res 26:1–7CrossRefPubMedGoogle Scholar
  6. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrel DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443CrossRefPubMedGoogle Scholar
  7. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689Google Scholar
  8. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229Google Scholar
  9. Fryer P (1992a) Mud volcanoes of the Marianas. Sci Am 266:46–52Google Scholar
  10. Fryer P (1992b) A synthesis of Leg 125 drilling of serpentine seamounts on the Mariana and Izu-Bonin forearcs. Proc ODP Sci Results 125:593–614Google Scholar
  11. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576PubMedGoogle Scholar
  12. Gorshkova NM, Ivanova EP, Sergeev AF, Zhukova NV, Alexeeva Y, Wright JP, Nicolau DV, Mikhailov VV, Christen R (2003) Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 53:2073–2078CrossRefPubMedGoogle Scholar
  13. Huu NB, Denner EBM, Ha DT, Wanner G, Stan-Lotter H (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375PubMedGoogle Scholar
  14. Lane DJ (1985) 16S/23S sequencing. In: Stackbtrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–176Google Scholar
  15. Martin S, Marquez MC, Sanchez-Porro C, Mellado E, Arahal DR, Ventosa A (2003) Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53:1383–1387CrossRefPubMedGoogle Scholar
  16. Mottl MJ (1992) Pore waters from serpentine seamounts in the Mariana and Izu-Bonin forearcs, Leg 125: evidence for volatiles from the subducting slab. Proc ODP Sci Results 125:373–385Google Scholar
  17. Mottl MJ, Komor SC, Fryer P, Moyer CL (2003) Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195. Geochem Geophys Geosyst G34. DOI  10.1029/2003GC000588Google Scholar
  18. Murmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118PubMedGoogle Scholar
  19. Rontani J-F, Mouzdahir A, Michotey V, Caumette P, Bonin P (2003) Production of a polyunsaturated isoprenoid wax ester during aerobic metabolism of squalene by Marinobacter squalenivorans sp. nov. Appl Environ Microbiol 69:4167–4176Google Scholar
  20. Sako Y, Takai K, Ishida Y, Uchida A, Katayama Y (1996) Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46:1099–1104PubMedGoogle Scholar
  21. Salisbury MH, ODP Leg 195 Shipboard Scientific Party (2002) Site 1200. In: Proceedings of the ODP initial reports, vol 195. http://www-odp.tamu.edu/publications/195_IR/195TOC.HTM
  22. Shieh WY, Jean WD, Lin Y-T, Tseng M (2003) Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 49:244–252CrossRefPubMedGoogle Scholar
  23. Smith DC, Spivack AJ, Fisk MR, Haveman SA, Staudigel H, ODP Leg 185 Shipboard Scientific Party (2000) Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiol J 17:207–219CrossRefGoogle Scholar
  24. Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297PubMedGoogle Scholar
  25. Takai K, Horikoshi K (2000) Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17PubMedGoogle Scholar
  26. Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T, Sako Y, Nealson KH, Horikoshi K (2003) Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174Google Scholar
  27. Takai K, Inoue A, Horikoshi K (1999) Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11,000 m deep Mariana Trench. Int J Syst Bacteriol 49:619–628PubMedGoogle Scholar
  28. Takai K, Inoue A, Horikoshi K (2002) Methanothermococcus okinawensis sp. nov., a thermophilic methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol 52:1089–1095CrossRefPubMedGoogle Scholar
  29. Takai K, Komatsu T, Inagaki F, Horikoshi K (2001a) Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629Google Scholar
  30. Takai K, Komatsu T, Horikoshi K (2001b) Hydrogenobacter subterraneus sp. nov., an extremely thermophilic, heterotrophic bacterium unable to grow on hydrogen gas, from deep subsurface geothermal water. Int J Syst Evol Microbiol 51:1425–1435PubMedGoogle Scholar
  31. Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM, Dohnalkova A, Fredrickson JK (2001c) Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely akaliphilic bacterium isolated from a deep South African gold mine. Int J Syst Evol Microbiol 51:1245–1256PubMedGoogle Scholar
  32. Takai K, Sugai A, Itoh Y, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500PubMedGoogle Scholar
  33. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128CrossRefGoogle Scholar
  34. Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham W-R, Lünsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348PubMedGoogle Scholar
  35. Yoon J-H, Shin D-Y, Kim I-G, Kang KH, Park Y-H (2003) Marinobacter litoralis sp. nov., a moderately halophilic bacterium isolated from sea water from the East Sea in Korea. Int J Syst Evol Microbiol 53:563–568CrossRefPubMedGoogle Scholar
  36. Zillig W, Holz I, Janekovic D, Klenk H-P, Imsel E, Trent J, Wunderl S, Forjaz VH, Coutinho R, Ferreira T (1990) Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ken Takai
    • 1
    Email author
  • Craig L. Moyer
    • 2
  • Masayuki Miyazaki
    • 1
  • Yuichi Nogi
    • 1
  • Hisako Hirayama
    • 1
  • Kenneth H. Nealson
    • 1
    • 3
  • Koki Horikoshi
    • 1
  1. 1.Subground Animalcule Retrieval (SUGAR) Project, Frontier Research System for ExtremophilesJapan Agency for Marine-Earth Science and TechnologyYokosuka 237-0061Japan
  2. 2.Biology DepartmentWestern Washington UniversityBellinghamUSA
  3. 3.Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations