Extremophiles

, Volume 8, Issue 4, pp 269–282 | Cite as

Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field

  • Ken Takai
  • Toshitaka Gamo
  • Urumu Tsunogai
  • Noriko Nakayama
  • Hisako Hirayama
  • Kenneth H. Nealson
  • Koki Horikoshi
Original Paper

Abstract

Subsurface microbial communities supported by geologically and abiologically derived hydrogen and carbon dioxide from the Earth’s interior are of great interest, not only with regard to the nature of primitive life on Earth, but as potential analogs for extraterrestrial life. Here, for the first time, we present geochemical and microbiological evidence pointing to the existence of hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) dominated by hyperthermophilic methanogens beneath an active deep-sea hydrothermal field in the Central Indian Ridge. Geochemical and isotopic analyses of gaseous components in the hydrothermal fluids revealed heterogeneity of both concentration and carbon isotopic compositions of methane between the main hydrothermal vent (0.08 mM and −13.8‰ PDB, respectively) and the adjacent divergent vent site (0.2 mM and −18.5‰ PDB, respectively), representing potential subsurface microbial methanogenesis, at least in the divergent vent emitting more 13C-depleted methane. Extremely high abundance of magmatic energy sources such as hydrogen (2.5 mM) in the fluids also encourages a hydrogen-based, lithoautotrophic microbial activity. Both cultivation and cultivation-independent molecular analyses suggested the predominance of Methanococcales members in the superheated hydrothermal emissions and chimney interiors along with the other major microbial components of Thermococcales members. These results imply that a HyperSLiME, consisting of methanogens and fermenters, occurs in this tectonically active subsurface zone, strongly supporting the existence of hydrogen-driven subsurface microbial communities.

Keywords

Central Indian Ridge Deep-sea hydrothermal vent Hydrogen-oxidizing Hyperthermophilic Methanogen Subsurface 

References

  1. Anderson RT, Chapelle FH, Lovley DR (1998) Evidence against hydrogen-based microbial ecosystems in basalt aquifers. Science 281:976–977CrossRefPubMedGoogle Scholar
  2. Baross JA, Lilley MD, Gordon LI (1982) Is the CH4, H2 and CO venting from submarine hydrothermal systems produced by thermophilic bacteria? Nature 298:366–368Google Scholar
  3. Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of Archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21CrossRefPubMedGoogle Scholar
  4. Chapelle FH, O’Neil K, Bradley PM, Methe BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315PubMedGoogle Scholar
  5. Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem Geol 191:345–359CrossRefGoogle Scholar
  6. Delaney JR, Kelley DS, Lilley MD, Butterfield DA, Baross JA, Wilcock WS, Embley RW, Summit M (1998) The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges. Science 281:222–230CrossRefGoogle Scholar
  7. DeMets C, Gordon RG, Argus DF (1988) Intra plate deformation and closure of the Australia–Antarctica–Africa plate circuit. J Geophys Res 93:11877–11897Google Scholar
  8. Deming JW, Baross JA (1993) Deep-sea smokers: windows to a subsurface biosphere? Geochim Cosmochim Acta 57:3219–3230CrossRefPubMedGoogle Scholar
  9. Fisk MR, Giovannoni SJ (1999) Sources of nutrients and energy for a deep biosphere on Mars. J Geophys Res 104:11805–11815CrossRefGoogle Scholar
  10. Gamo T, Chiba H, Yamanaka T, Okudaira T, Hashimoto J, Tsuchida S, Ishibashi J, Kataoka S, Tsunogai U, Okamura K, Sano Y, Shinjo R (2001) Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge. Earth Planet Sci Lett 193:371–379CrossRefGoogle Scholar
  11. Hashimoto J, Ohta S, Gamo T, Chiba H, Yamaguchi T, Tsuchida S, Okudaira T, Watabe H, Yamanaka T, Kitazawa M (2001) First hydrothermal vent communities from the Indian Ocean discovered. Zool Sci 18:717–721Google Scholar
  12. Horita J, Berndt ME (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285:1055–1057CrossRefPubMedGoogle Scholar
  13. House CH, Schopf JW, Stetter KO (2003) Carbon isotopic fractionation by Archaea and other thermophilic prokaryotes. Org Geochem 34:345–356CrossRefGoogle Scholar
  14. Jannasch HW, Wirsen CO, Molyneaux SJ, Langworthy TA (1992) Comparative physiological studies on hyperthermophilic Archaea isolated from deep-sea hot vents with emphasis on Pyrococcus strain GB-D. Appl Environ Microbiol 58:3472–3481Google Scholar
  15. Kelly DS, Karson JA, Blackman DK, Früh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MD, Roe KK, Lebon GT, Rivizzigno P, the AT3-60 shipboard party (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412:145–149CrossRefPubMedGoogle Scholar
  16. Kimura H, Asada R, Masta A, Naganuma T (2003) Distribution of microorganisms in the subsurface of the Manus basin hydrothermal vent field in Papua New Guinea. Appl Environ Microbiol 69:644–648CrossRefPubMedGoogle Scholar
  17. Maidak BL, Cole JR, Lilburn TG, Parker Jr CT, Saxman PR, Stredwick JM, Garrity GM, Li B, Olsen GJ, Pramanik S, Schmidt TM, Tiedje JM (2000) The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28:173–174PubMedGoogle Scholar
  18. McCollom TM (1999) Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J Geophys Res 104:30729–30742CrossRefGoogle Scholar
  19. Nakagawa S, Takai K, Horikoshi K, Sako Y (2003) Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:863–869CrossRefPubMedGoogle Scholar
  20. Nakagawa S, Takai K, Horikoshi K, Sako Y (2004b) Aeropyrum camini sp. nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 54:329–335 (http://dx.doi.org/10.1099/ijs.0.02826-0)CrossRefPubMedGoogle Scholar
  21. Sako Y, Takai K, Uchida A, Ishida Y, Katayama Y (1996) Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacterium. Int J Syst Bacteriol 46:1099–1104PubMedGoogle Scholar
  22. Schrenk MO, Kelly DS, Delaney JR, Baross JA (2003) Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl Environ Microbiol 69:3580–3592CrossRefPubMedGoogle Scholar
  23. Seiler W, Giehl H, Roggendorf P (1980) Detection of carbon monoxide and hydrogen by conversion of mercury oxide to mercury vapor. Atmos Technol 12:40–45Google Scholar
  24. Shanks WC (2001) Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Mineralogical Society of America, Washington, DC, pp 469–525Google Scholar
  25. Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–454Google Scholar
  26. Straube WL, Deming JW, Somerville CC, Colwell RR, Baross JA (1990) Particulate DNA in smoker fluids: evidence for existence of microbial populations in hot hydrothermal systems. Appl Environ Microbiol 56:1440–1447Google Scholar
  27. Summit M, Baross JA (1998) Thermophilic subseafloor microorganisms from the 1996 North Gorda Ridge eruption. Deep-Sea Res Part II 45:2751–2766CrossRefGoogle Scholar
  28. Takai K, Horikoshi K (1999) Genetic diversity of Archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297PubMedGoogle Scholar
  29. Takai K, Horikoshi, K (2000a) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072CrossRefPubMedGoogle Scholar
  30. Takai K, Horikoshi K (2000b) Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17PubMedGoogle Scholar
  31. Takai K, Fujiwara Y (2002) Hydrothermal vents: biodiversity in deep-sea hydrothermal vents. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 1604–1617Google Scholar
  32. Takai K, Inoue A, Horikoshi K (1999) Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11,000-m deep Mariana Trench. Int J Syst Bacteriol 49:619–628Google Scholar
  33. Takai K, Sugai A, Itoh Y, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500PubMedGoogle Scholar
  34. Takai K, Komatsu T, Inagaki F, Horikoshi K (2001a) Distribution of Archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629PubMedGoogle Scholar
  35. Takai K, Moser DP, Deflaun M, Onstott TC, Fredrickson JK (2001b) Archaeal diversity in waters from deep South African gold mines. Appl Environ Microbiol 67:5750–5760Google Scholar
  36. Takai K, Inoue A, Horikoshi K (2002) Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol 52:1089–1095CrossRefPubMedGoogle Scholar
  37. Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T, Sako Y, Nealson KH, Horikoshi K (2003a) Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174CrossRefPubMedGoogle Scholar
  38. Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003b) Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:839–846CrossRefPubMedGoogle Scholar
  39. Takai K, Mormile MR, McKinley JP, Brockman FJ, Holben WE, Kovacik WP Jr, Fredrickson JK (2003c) Shifts in archaeal communities associated with lithological and geochemical variations in subsurface Cretaceous rock. Environ Microbiol 5:309–320CrossRefPubMedGoogle Scholar
  40. Takai K, Nakagawa S, Sako Y, Horikoshi K (2003d) Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. Int J Syst Evol Microbiol 53:1947–1954CrossRefPubMedGoogle Scholar
  41. Tanner MA, Grobel BM, Dojka MA, Pace NR (1998) Specific ribosomal DNA sequences from diverse environmental settings correlate with experimental contaminants. Appl Environ Microbiol 64:3110–3113PubMedGoogle Scholar
  42. Tsunogai U, Ishibashi J, Wakita H, Gamo T, Watanabe K, Kajimura T, Kanayama S, Sakai H (1994) Peculiar features of Suiyo Seamount hydrothermal fluids, Izu-Bonin arc: differences from subaerial volcanism. Earth Planet Sci Lett 126:289–301Google Scholar
  43. Tsunogai U, Yoshida N, Ishibashi J, Gamo T (2000) Carbon isotopic distribution of methane in deep-sea hydrothermal plume, Myojin Knoll Caldera, Izu-Bonin arc: implications for microbial methane oxidation in ocean and applications to heat flux estimation. Geochim Cosmochim Acta 64:2439–2452Google Scholar
  44. Tsunogai U, Kouzuma F, Nakayama N, Gamo T, Kaneko T (2002a) Development of multi-bottle gas-tight water sampler WHATS for sampling sea-floor venting fluids (in Japanese with English abstract). JAMSTEC J Deep Sea Res 21:91–95Google Scholar
  45. Tsunogai U, Nakagawa F, Komatsu D, Gamo T (2002b) Stable carbon and oxygen isotopic analysis of atmospheric carbon monoxide using CF-IRMS by isotope-ratio monitoring of CO. Anal Chem 74:5695–5700CrossRefPubMedGoogle Scholar
  46. Van Dover CL, Humphris SE, Fornari D, Cavanaugh CM, Collier R, Goffredi SK, Hashimoto J, Lilly MD, Reysenbach AL, Shank TM, Von Damm KL, Banta A, Gallant RM, Götz D, Green D, Hall J, Harmer TL, Hurtado LA, Johnson P, McKiness ZP, Meredith C, Olson E, Pan IL, Turnipseed M, Won Y, Young III CR, Vrijenhoek RC (2001) Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294:818–823PubMedGoogle Scholar
  47. Von Damm KL (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris SE, Zierenberg RA, Mullineaux LS, Tompson RE (eds) Geophysical monograph 91 seafloor hydrothermal system. American Geographical Union, Washington, DC, pp 222–247Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ken Takai
    • 1
  • Toshitaka Gamo
    • 2
  • Urumu Tsunogai
    • 2
  • Noriko Nakayama
    • 2
  • Hisako Hirayama
    • 1
  • Kenneth H. Nealson
    • 1
    • 3
  • Koki Horikoshi
    • 1
  1. 1.Subground Animalcule Retrieval (SUGAR) Project, Frontier Research System for ExtremophilesJapan Marine Science and Technology Center (JAMSTEC)Yokosuka 237-0061Japan
  2. 2.Division of Earth and Planetary Sciences, Graduate School of ScienceHokkaido UniversitySapporo 060-0810Japan
  3. 3.Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations