Extremophiles

, Volume 7, Issue 6, pp 435–442

A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum

  • Marianna Turkiewicz
  • Marzena Pazgier
  • Halina Kalinowska
  • Stanisław Bielecki
Original Paper

Abstract

An extracellular serine proteinase, lap2, from the psychrophilic antarctic yeast Leucosporidium antarcticum 171 was purified to homogeneity and characterized. The enzyme is a glycoprotein with a molecular mass of 34.4 kDa and an isoelectric point of pH 5.62. The proteinase is halotolerant, and its activity and stability are dependent neither on Ca2+ nor on other metal ions. Lap2 is a true psychrophilic enzyme because of low optimal temperature (25°C), poor thermal stability, relatively small values of free energy, enthalpy and entropy of activation, and high catalytic efficiency at 0–25°C. The 35 N-terminal amino acid residues of lap2 have homology with subtilases of the proteinase K subfamily (clan SB, family S8, subfamily C). The proteinase lap2 is the first psychrophilic subtilase in this family.

Keywords

Antarctic Leucosporidium antarcticum Psychrophile Subtilisin-like 

References

  1. Anson ML (1938) Estimation of pepsin, trypsin, papain and cathepsin with haemoglobin. J Gen Physiol 22:79–82Google Scholar
  2. Ásgeirsson BK, Bjarnason JB (1993) Properties of elastase from Atlantic cod, a cold-adapted proteinase. Biochim Biophys Acta 1164:91–100PubMedGoogle Scholar
  3. Bae IH, Kang KH (1985) Studies on extracellular protease of Saccharomycopsis lipolytica (Candida lipolytica): purification and properties of enzyme. Korean J Appl Microbiol Bioeng 15:286–292Google Scholar
  4. Bergero R, Girlanda M, Varese GC, Intili D, Luppi AM (1999) Psychrooligotrophic fungi from Arctic soils of Franz Joseph Land. Polar Biol 21:361–368CrossRefGoogle Scholar
  5. Bowman JP, McCammon SA, Nichols DS, Skerratt JS, Rea SM, Nichols PD, McMeekin TA (1997a) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov.—novel species with the ability to produce eicosapentaenoic acid (20:5ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047PubMedGoogle Scholar
  6. Bowman JP, Nichols DS, McMeekin TA (1997b) Psychrobacter glacincola sp. nov., a halotolerant, psychrophilic bacterium isolated from Antarctic sea ice. Syst Appl Microbiol 20:209–215Google Scholar
  7. Bowman JP, Gosink JJ, McCammon SA, Lewis TE, Nichols DS, Nicols PD, Skerratt JH, Staley JT, McMeekin TA (1998a) Colwellia demingae sp. nov., Colwellia horneae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6 ω-3). Int J Syst Bacteriol 48:1171–1180Google Scholar
  8. Bowman JP, McCammon SA, Brown JL, McMeekin TA (1998b) Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice. Int J Syst Bacteriol 48:1205–1212PubMedGoogle Scholar
  9. Chattopadhyay MK (2000) Cold-adaptation of Antarctic microorganisms—possible involvement of viable but nonculturable state. Polar Biol 13:223–224CrossRefGoogle Scholar
  10. Davail S, Feller G, Narinx E, Gerday C (1994) Cold-adaptation of proteins. Purification, characterization and sequence of the heat-labile subtilisin from the Antarctic psychrophile Bacillus TA. J Biol Chem 269:17448–17453PubMedGoogle Scholar
  11. Davidow LS, O'Donnell MM, Kaczmarek FS, Pereira DA, DeZeeuw JR, Franke AE (1987) Cloning and sequencing of the alkaline extracellular protease gene of Yarrowia lipolytica. J Bacteriol 169:4621–4629PubMedGoogle Scholar
  12. DelMar EG, Largmann C, Brodrick JW, Geokas MC (1979) A sensitive new substrate for chymotrypsin. Anal Biochem 99:316–320PubMedGoogle Scholar
  13. Denner BM, Mark B, Busse HJ, Turkiewicz M, Lubitz W (2001) Psychrobacter proteolyticus sp. nov., a psychrotrophic, halotolerant bacterium isolated from Antarctic krill (Euphausia superba Dana) excreting a cold-adapted metalloprotease. Syst Appl Microbiol 24:44–53PubMedGoogle Scholar
  14. Donachie SP (1995) Ecophysiological description of Marine Bacteria from Admiralty Bay (Antarctica), and the digestive tracts of selected Euphausiidae. PhD thesis, Department of Antarctic Biology, Polish Academy of Sciences, WarsawGoogle Scholar
  15. Durham DR (1993) The elastynolytic properties of subtilisin GX from alkalophilic Bacillus sp. strain 6644 provides a means of differentiation from other subtilisins. Biochem Biophys Res Commun 194:1365–1370CrossRefPubMedGoogle Scholar
  16. Eklund MW, Spinelli J, Miyauchi D, Groninger H (1965) Characteristic of yeast isolated from Pacific crab meat. Appl Microbiol 13:985–990PubMedGoogle Scholar
  17. Fell JW, Statzell AC, Hunter IL, Phaff HJ (1969) Leucosporidium gen. nov., the heterobasidiomycetous stage of several yeast of the genus Candida. Antonie Van Leeuwenhoek 35:433–462PubMedGoogle Scholar
  18. Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841PubMedGoogle Scholar
  19. Gerday C, Aittaleb M, Bentahir M, Chessa JP et al. (2000) Cold-adapted enzymes: from fundamental to biotechnology. Trends Biotechnol 18:103–107PubMedGoogle Scholar
  20. Gomes J, Gomes I, Steiner W (2000) Thermolabile xylanase of the Antarctic yeast Cryptococcus adeliae: production and properties. Extremophiles 4:227–235CrossRefPubMedGoogle Scholar
  21. Gosink JJ, Herwig RP, Staley JT (1997) Octadecobacter arcticus gen. nov., sp. nov., and O. Antarcticus, sp. nov., nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst Appl Microbiol 20:356–365Google Scholar
  22. Gosink JJ, Woese CR, Staley JT (1998) Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov., and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of Flectobacillus glomeratus as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48:223–235PubMedGoogle Scholar
  23. Hummel BCW (1959) A modified spectrophotometric method of determination of chymotrypsin, trypsin and thrombin. Can J Biochem Physiol 37:1393–1400Google Scholar
  24. Jany KD, Lederer G, Mayer B (1986) Amino acid sequence of proteinase K from the mold Tritirachium album Limber. FEBS Lett 199:139–144CrossRefGoogle Scholar
  25. Kulakova L, Galkin A, Kurihara T, Yoshimura T, Esaki N (1999) Cold-active serine protease from psychrophilic Shewanella strain Ac10: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 65:611–617PubMedGoogle Scholar
  26. Kwon ST, Terada I, Matsuzawa H, Ohta T (1988) Nucleotide sequence of the gene for aqualysin I (a thermophilic alkaline serine protease) of Thermus aquaticus YT-1 and characteristics of the deduced primary structure of the enzyme. Eur J Biochem 173:491–497PubMedGoogle Scholar
  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:681–685Google Scholar
  28. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666Google Scholar
  29. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:165–275Google Scholar
  30. Nicaud JM, Fabre E, Beckerich JM, Fournier P, Gaillardin C (1989) Cloning, sequencing, and amplification of the alkaline extracellular protease (XPR2) gene of the yeast Yarrowia lipolytica. J Biotechnol 12:285–297CrossRefGoogle Scholar
  31. Nichols D, Bowman J, Sanderson K, Nichols CM, Lewis T, McMeekin T, Nichols PD (1999) Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Microbiol 10:240–246CrossRefGoogle Scholar
  32. Ogrydziak DM (1993) Yeast extracellular proteases. Crit Rev Biotechnol 13:1–55PubMedGoogle Scholar
  33. Ogrydziak DM, Scharf SJ (1982) Alkaline extracellular protease produced by Saccharomycopsis lipolytica CX161-1B. J Gen Microbiol 128:1225–1234PubMedGoogle Scholar
  34. Petrescu I,·Brasseur-Lamotte J, Chessa JP, Ntarima P, Claeyssens M, Devreese B, Marino G, Gerday C (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4:137–144CrossRefPubMedGoogle Scholar
  35. Rawlings ND, Barret AJ (1994) Families of serine peptidases. Methods Enzymol 244:19–61PubMedGoogle Scholar
  36. Ray MK, Uma Devi K, Seshu Kumar G, Shivaji S (1992) Extracellular protease from the Antarctic yeast Candida humicola. Appl Environ Microbiol 58:1992–1923PubMedGoogle Scholar
  37. Sheridan PP, Panasik N, Coombs JM, Brenchley JE (2000) approaches for deciphering the structural basis of low temperature enzyme activity. Biochim Biophys Acta 1543:417–433CrossRefPubMedGoogle Scholar
  38. Sietzen RJ, Leunissen JAM (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523PubMedGoogle Scholar
  39. Tobe S, Takami T, Ikeda S, Mitsugi K (1976) Production and some enzymatic properties of alkaline proteinase Candida lipolytica. Agric Biol Chem 40:1087–1092Google Scholar
  40. Wagner L, Geisen H, Zahn H (1983) Histochemical localization of high sulphur keratins with silver nitrate. Colloid Polym Sci 261:365–369Google Scholar
  41. Zacharius RM, Zell TE, Norrison JH, Woodlock JJ (1969) Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem 30:148–152PubMedGoogle Scholar
  42. Zucconi L, Pagano S, Fenice M, Selbmann L, Tosi S, Onfri S (1996) Growth temperature preference of fungal strains from Victoria Land, Antarctica. Polar Biol 1653–61Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Marianna Turkiewicz
    • 1
  • Marzena Pazgier
    • 1
  • Halina Kalinowska
    • 1
  • Stanisław Bielecki
    • 1
  1. 1.Institute of Technical BiochemistryTechnical University of ŁódźŁódźPoland

Personalised recommendations