, Volume 7, Issue 5, pp 347–351 | Cite as

Virioplankton community structure along a salinity gradient in a solar saltern

  • Ruth-Anne Sandaa
  • Evy Foss Skjoldal
  • Gunnar Bratbak
Original Paper


The virioplankton community structure along a salinity gradient from near seawater (40‰) to saturated sodium chloride brine (370‰) in a solar saltern was investigated by pulsed-field gel electrophoresis. Viral populations with genome sizes varying from 10 kb to 533 kb were detected. The viral community structure changed along the salinity gradient. Cluster analysis of the viral genome-banding pattern resulted in two main clusters. The virioplankton diversity within the samples with salinity from 40‰ to 150‰ was on the same cluster of a cladogram. The other group consisted of virioplankton from samples with salinity above 220‰. The virioplankton diversity in the different samples was calculated using the Shannon index. The diversity index demonstrated an increase in diversity in the samples along the gradient from 40‰ to 150‰ salinity, followed by a decrease in the diversity index along the rest of the salinity gradient. These results demonstrate how viral diversity changes from habitats that are considered one of the most common (seawater) to habitats that are extreme in salt concentrations (saturated sodium brine). The diversity index was highest in the environments that lie in between the most extreme and the most common.


Diversity Pulsed-field gel electrophoresis Salinity gradient Solar saltern Virioplankton 


  1. Antón J, Llobet-Brossa E, Rodríguez-Valera F, Amann R (1999) Fluorescence in situ hybridization of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523PubMedGoogle Scholar
  2. Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R (2000) Extremely halophilic Bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057PubMedGoogle Scholar
  3. Benlloch S, Martínez-Murcia AJ, Rodríguez-Valera F (1995) Sequencing of bacterial and archaeal 16S rRNA genes directly amplified from a hypersaline environment. Syst Appl Microbiol 18:574–581Google Scholar
  4. Benlloch S, Acinas SG, Martínez-Murcia AJ, Rodríguez-Valera F (1996) Description of prokaryotic biodiversity along the salinity gradient of a multipond solar saltern by direct PCR amplification of 16S rDNA. Hydrobiologia 329:19–31Google Scholar
  5. Casamayor EO, Calderón-Paz JI, Pedrós-Alió C (2000) 5S rRNA fingerprints of marine bacteria, halophilic Archaea and natural prokaryotic assemblages along a salinity gradient. FEMS Microbiol Ecol 34:113–119CrossRefPubMedGoogle Scholar
  6. Castberg T, Larsen A, Sandaa R-A, Brussaard CPD, Egge J, Heldal M, Thyrhaug R, van Hannen EJ, Bratbak G (2001) Microbial population dynamics and diversity during blooms of the marine coccolithophorid Emiliania huxleyi (Haptophyta). Mar Ecol Prog Ser 221:39–46Google Scholar
  7. Diez B, Antón J, Guixa- Boixareu N, Pedrós-Alió C, Rodríguez-Valera F (2000) Pulsed-field gel electrophoresis analysis of virus assemblages present in a hypersaline environment. Internal Microbiol 3:159–164Google Scholar
  8. Guixa-Boixareu N, Calderón-Paz JI, Heldal M, Bratbak G, Pedrós-Alió C (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol 11:215–227Google Scholar
  9. Javor BJ (1983) Plantonic standing crop and nutrients in a saltern ecosystem. Limnol Oceanogr 28:153–159Google Scholar
  10. Larsen A, Castberg T, Sandaa R-A, Brussaard CPD, Egge J, Heldal M, Paulino A, Thyrhaug R, van Hannen EJ, Bratbak G (2001) Population dynamics and diversity of phytoplankton, bacteria and virus in a seawater enclosure. Mar Ecol Prog Ser 221:47–57Google Scholar
  11. Oren A (1994) The ecology of the extremely halophilic Archaea. FEMS Microbiol Rev 13:415–440Google Scholar
  12. Oren A (2002) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39:1–7CrossRefGoogle Scholar
  13. Oren A, Rodríguez-Valera F (2001) The contribution of halophilic Bacteria to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 36:123–130Google Scholar
  14. Oren A, Bratbak G, Heldal M (1997) Occurrence of virus-like particles in the Dead Sea. Extremophiles 1:143–149CrossRefPubMedGoogle Scholar
  15. Øvreås L, Bourne D, Sandaa R-A, Casamayor EO, Benlloch S, Goddard V, Smeardon G, Heldal M, Thingstad FT (2003) Response of bacterial and viral communities to nutrient manipulations in seawater mesocosms. Aquat Microb Ecol (in press)Google Scholar
  16. Pedrós-Alió C, Calderón-Paz JI, MacLean MH, Medina G, Marrasé C, Gasol JM, Guixa- Boixareu N (2000) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143–155CrossRefPubMedGoogle Scholar
  17. Rodríguez-Valera F (1988) Characteristics and microbial ecology of hypersaline environments. In: Rodríguez-Valera F (ed) Halophilic bacteria, vol I. CRC Press, Boca Raton, pp 3–30Google Scholar
  18. Rodríguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1981) Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microbiol Ecol 7:235–243Google Scholar
  19. Rodríguez-Valera F, Ventosa A, Juez G, Imhoff JF (1985) Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microbiol Ecol 11:107–115Google Scholar
  20. Rodríguez-Valera F, Acinas SG, Antón J (1999) Contribution of molecular techniques to the study of microbial diversity in hypersaline environments. In: Oren A (ed) Microbiology and biochemistry of hypersaline environments. CRC Press, Boca Raton, pp 27–38Google Scholar
  21. Shannon CE (1948) A mathematical theory of communication. Bell Syst Technol 27:379–423Google Scholar
  22. Tang S-L, Nuttall S, Ngui K, Fisher C, Lopez P, Dyall-Smith M (2002) HF2 a double-stranded DNA tailed haloarchaeal virus with a mosaic genome. Mol Microbiol 44:283–296CrossRefPubMedGoogle Scholar
  23. Wommack KE, Ravel J, Hill RT, Chun J, Colwell RR (1999) Population dynamics of Chesapeake bay virioplankton: Total community analysis by pulsed-field gel electrophoresis. Appl Environ Microbiol 65:231–240PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Ruth-Anne Sandaa
    • 1
  • Evy Foss Skjoldal
    • 1
  • Gunnar Bratbak
    • 1
  1. 1.Department of MicrobiologyUniversity of Bergen BergenNorway

Personalised recommendations