, Volume 7, Issue 4, pp 319–326

Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology

  • Soledad Arias
  • Ana del Moral
  • Maria Rita Ferrer
  • Richard Tallon
  • Emilia Quesada
  • Victoria Béjar
Original Paper


Mauran is an anionic, sulfated heteropolysaccharide with a high uronic-acid content, synthesized by strain S-30 of the halophilic bacterium Halomonas maura. Under optimum environmental and nutritional conditions, it is capable of producing up to 3.8 g of mauran per liter of medium. Aqueous solutions of mauran are highly viscous and display pseudoplastic, viscoelastic and thixotropic behavior. Its viscosity is stable over a wide pH range (3–11), after freezing-thawing processes, and in the presence of sucrose, salts, surfactants and α-hydroxyl acids. It has a high capacity for binding lead and other cations. Its molecular mass when collected from an MY medium supplemented with 2.5% w/v salt during the stationary growth phase is 4.7×106 Da.


Biotechnology Exopolysaccharides Halomonas maura Halophiles Mauran 


  1. Becker A, Katzen F, Puhler A, Lelpi L (1998) Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol 50:145–152CrossRefPubMedGoogle Scholar
  2. Béjar V, Llamas I, Calvo C, Quesada E (1998) Characterization of exopolysaccharides produced by 19 halophilic strains included in the species Halomonas eurihalina. J Biotechnol 61:135–141Google Scholar
  3. Bergmeyer HV, Bent E (1965) Determination with glucose oxidase and peroxidase. In: Bergmeyer HV (ed) Method of enzymatic analysis. Academic Press, New York, pp 123–130Google Scholar
  4. Bouchotroch S, Quesada E, Izquierdo I, Rodríguez M, Béjar V (2000) Bacterial exopolysaccharides produced by newly discovered bacteria belonging to the genus Halomonas, isolated from hypersaline habitats in Morocco. J Ind Microbiol Biotechnol 24:374–378CrossRefGoogle Scholar
  5. Bouchotroch S, Quesada E, Del Moral A, Llamas I, Béjar V (2001) Halomonas maura sp. nov., a new moderately halophilic, exopolysaccharide-producing bacteria. Int J Syst Evol Microbiol 51:1625–1632Google Scholar
  6. Calvo C, Ferrer MR, Martínez-Checa F, Béjar V, Quesada E (1995) Some rheological properties of the extracellular polysaccharide produced by Volcaniella eurihalina. Appl Biochem Biotechnol 55:45–54Google Scholar
  7. Calvo C, Martínez-Checa F, Mota A, Béjar V, Quesada E (1998) Effect of cations, pH and sulphate content on the viscosity and emulsifying activity of the Halomonas eurihalina exopolysaccharide. J Ind Microbiol Biotechnol 20:205–209Google Scholar
  8. Capron I, Brigand G, Muller G (1998) Thermal denaturation and renaturation of a fermentation broth of xanthan: rheological consequences. Int J Biol Macromol 23:215–225Google Scholar
  9. Chaplin MF (1982) A rapid and sensitive method for the analysis of carbohydrate components in glycoproteins using gas-liquid chromatography. Anal Biochem 123:336–341PubMedGoogle Scholar
  10. Cheirsilp B, Shimizu H, Shioya S (2001) Modelling and optimization of environmental conditions for kefiran production by Lactobacillus kefiranofaciens. Appl Microbiol Biotechnol 57:639–646CrossRefPubMedGoogle Scholar
  11. De Vuyst L, Vanderveken F, Vandeven S, Degeest B (1998) Production by and isolation of exopolysaccharides from Streptoccus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis. J Appl Microbiol 84:1059–1068CrossRefPubMedGoogle Scholar
  12. Dobson SJ, Franzman PD (1996) Unification of the genera Deleya (Bauman et al., 1983), Halomonas (Vreeland et al., 1992 ) and Halovibrio (Fendrich, 1988) and the species Paracoccus halodenitrificans (Robinson and Gibons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46:550–558Google Scholar
  13. Dubois M, Guilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–355Google Scholar
  14. Geddie JL, Sutherland IW (1993) Uptake of metals by bacterial polysaccharides. J Appl Bacteriol 74:467–472Google Scholar
  15. Geddie JL, Sutherland IW (1994) The effect of acetylation on cation binding by algal and bacterial alginates. Biotechnol Appl Biochem 20:117–129Google Scholar
  16. Giavasis I, Harvey LM, McNeil B (2000) Gellan gum. Crit Rev Biotechnol 20:177–211PubMedGoogle Scholar
  17. Gorret AU, Maubois N, Engasser JL, Ghoul JM (2001) Study of the effects of temperature, pH and yeast extract on growth and exopolysaccharide production by Propionibacterium acidipropionici on milk microfiltrate using a response surface methodology. J Appl Microbiol 68:370Google Scholar
  18. Guezennec JG, Pignet P, Raguenes G, Deslandes E, Lijour Y, Gentric E (1994) Preliminary chemical characterization of unusual eubacterial exopolysaccharides of deep-sea origin. Carbohydr Polymers 24:287–294Google Scholar
  19. Hasui M, Matsuda M, Okutani K, Shigeta S (1995) In vitro antiviral activities of sulfated polysaccharides from marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. J Biol Macromol 17:293–297CrossRefGoogle Scholar
  20. Hayashi K, Hayashi T, Kojima I (1996) A natural sulfated polysaccharide calcium spirulan, isolated from Spirulina platensis: in vitro and anti-human immunodeficiency virus activities. Aids Res Hum Retroviruses 12:463–1471Google Scholar
  21. Hayashi T, Hayashi K (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod Llodya 59:83–87Google Scholar
  22. Itoh H, Noda H, Amano H, Zhuaug C, Mizuno T, Ito H (1993) Antitumour activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res 13:2045–2052PubMedGoogle Scholar
  23. Laws A, Gu Y, Marshall V (2001) Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol Adv 19:597–625CrossRefGoogle Scholar
  24. Looijesteijn PJ, Casteren WHM van, Tuinier R, Doeswijk-Voragen CHL, Hugenholtz J (2000) Influence of different substrate limitations on the yield, composition and molecular mass of exopolysaccharides produced by Lactococcus lactis subsp. cremoris in continuous cultures. J Appl Microbiol 89:116–122CrossRefPubMedGoogle Scholar
  25. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83CrossRefPubMedGoogle Scholar
  26. Orgambide G, Montrozier H, Servin P, Roussel J, Trigalet-Demery D, Trigalet A (1991) High heterogeneity of the exopolysaccharides of Pseudomonas solanacearum strain GMI 1000 and the complete structure of the major polysaccharide. J Biol Chem 266:8312–8321PubMedGoogle Scholar
  27. Petronella JL, Hugenholtz J (1999) Uncoupling of growth and exopolysaccharide production by Lactococcus lactis subsp. cremoris NIZO B40 and optimization of its synthesis. J Biosci Bioeng 88:178–182CrossRefGoogle Scholar
  28. Pham PL, Dupont I, Roy D, Lapointe G, Cerning J (2000) Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Appl Environ Microbiol 66:2302–2310CrossRefPubMedGoogle Scholar
  29. Philipps R de, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible application. FEMS Microbiol Rev 22:151–175CrossRefGoogle Scholar
  30. Quesada E, Valderrama MJ, Béjar V, Ventosa A, Gutierrez MC, Ruiz-Berraquero F, Ramos-Cormenzana A (1990) Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic nonmotile gram-negative rod. Int J Syst Bacteriol 40:261–267Google Scholar
  31. Quesada E, Béjar V, Calvo C (1993) Exopolysaccharide production by Volcaniella eurihalina. Experientia 49:1037–1041Google Scholar
  32. Quesada E, Moral A del, Béjar V (1994) Comparative methods for isolation of Volcaniella eurihalina exopolysaccharide. Biotechnol Tech 8:701–706Google Scholar
  33. Quesada E, Béjar V, Ferrer MR, Calvo C, Llamas I, Martínez-Checa F, Arias S, Ruiz-García C, Paez R, Martinez-Cánovas MJ, Del Moral A (2002) Moderately halophilic exopolysaccharide-producing bacteria. In: Ventosa A (ed) Halophilic microorganisms. Springer, Berlin Heidelberg New York (in press)Google Scholar
  34. Riou D, Colliec-Jouault S, Pinczon du Sel D, Bósch S, Siavoshian S, Le Bert V, Tomasoni C, Sinquin C, Durand P, Roussakis C (1996) Antitumour and antiproliferative effects of a fucan extracted from Ascophyllum nodosum against a non-small-cell bronchopulmonary carcinoma line. Anticancer Res 16:1213–1218PubMedGoogle Scholar
  35. Rouser G, Fleischer S, Yamamoto A (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496PubMedGoogle Scholar
  36. Shepherd R, Rockey J, Sutherland IW, Roller S (1995) Novel bioemulsifiers form microorganisms for use in foods. J Biotechnol 40:207–217PubMedGoogle Scholar
  37. Sutherland IW (1988) Bacterial surface polysaccharide: structure and function. Int Rev Cytol 113:187–231PubMedGoogle Scholar
  38. Sutherland IW (1994) Structure-function relationships in microbial exopolysaccharides. Biotechnol Adv 12:393–448CrossRefGoogle Scholar
  39. Sutherland IW (1998) Novel and established applications of microbial polysaccharides. TIBTECH 16:41–46CrossRefGoogle Scholar
  40. Sutherland IW (1999) Microbial polysaccharide products. Biotechnol Genet Eng Rev 16:217–229PubMedGoogle Scholar
  41. Sutherland IW (2001) Microbial polysaccharides from Gram-negative bacteria. Int Dairy J 11:663–674Google Scholar
  42. Tait MI, Sutherland IW, Clarke-Sturman A (1986) Effect of growth conditions on the production, composition and viscosity of Xanthomonas campestris exopolysaccharide. J Gen Microbiol 132:1483–1492Google Scholar
  43. Tombs M, Harding SE (1998) An introduction to polysaccharide biotechnology. Taylor and Francis, LondonGoogle Scholar
  44. Villain-Simmonet A, Milas M, Rinaudo M (2000) A new bacterial polysaccharide (YAS34). Characterization of the conformations and conformational transitions. Int J Biol Macromol 27:65–75Google Scholar
  45. Witvrouw M, Clercq E de (1997) Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 29:497–511CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Soledad Arias
    • 1
  • Ana del Moral
    • 1
  • Maria Rita Ferrer
    • 1
  • Richard Tallon
    • 2
  • Emilia Quesada
    • 1
  • Victoria Béjar
    • 1
  1. 1.Exopolysaccharide Research Group, Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain
  2. 2.University of BordeauxGradignanFrance

Personalised recommendations