, Volume 7, Issue 4, pp 283–290 | Cite as

A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring

  • Koji Mori
  • Hongik Kim
  • Takeshi Kakegawa
  • Satoshi Hanada
Original Paper


A novel type of a sulfate-reducing microorganism, represented by strain Na82T, was isolated from a hot spring in Narugo, Japan. The isolate was a moderate thermophilic autotroph that was able to grow on H2/CO2 by sulfate respiration. The isolate could grow with nitrate in place of sulfate, and possessed menaquinone-7 and menaquinone-7(H2) as respiratory quinones. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Na82T was a member of the domain Bacteria and distant from any known bacteria, as well as from other sulfate-reducing bacteria (sequence similarities less than 80%). The phylogenetic analysis of the dsrAB gene (alpha and beta subunits of dissimilatory sulfite reductase) sequence also suggested that strain Na82T was not closely related to other sulfate reducers. On the basis of the phenotypic and phylogenetic data, a new taxon is established for the isolate. We proposed the name Thermodesulfobium narugense gen. nov., sp. nov. with strain Na82T (=DSM 14796T=JCM 11510T) as the type strain. Furthermore, a new family, Thermodesulfobiaceae fam. nov., is proposed for the genus.


Anaerobe Hot spring Sulfate-reducing bacterium Thermodesulfobiaceae fam. nov. Thermodesulfobium narugense gen. nov., sp. nov. Thermophile 



We thank Xian-Ying Meng (National Institute of Advanced Industrial Science and Technology) for electron microscopy. The research was supported by the Ministry of Education, Science and Technology (MEST), Japan, through Special Coordination Fund "Archaean Park Project" (International Research Project on Interaction Between Sub-Vent Biosphere and Geo-Environments).


  1. Adachi J, Hasegawa M (1995) Improved dating of the human chimpanzee separation in the mitochondrial-DNA tree: heterogeneity among amino-acid sites. J Mol Evol 40:622–628PubMedGoogle Scholar
  2. Beeder J, Torsvik T, Lien TL (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164:331–336CrossRefPubMedGoogle Scholar
  3. Bowman JP, Rea SM, McCammon SA, McMeekin TA (2000) Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica. Environ Microbiol 2:227–237CrossRefPubMedGoogle Scholar
  4. Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990) Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria. Syst Appl Microbiol 13:24–28Google Scholar
  5. Cameron EM (1982) Sulfate and sulfate reduction in early Precambrian oceans. Nature 296:145–148Google Scholar
  6. Cottrell MT, Cary SC (1999) Diversity of dissimilatory bisulfite reductase genes of bacteria associated with the deep-sea hydrothermal vent polychaete annelid Alvinella pompejana. Appl Environ Microbiol 65:1127–1132PubMedGoogle Scholar
  7. DSMZ (1993) Catalogue of strains, 5th edn. Gesellschaft fur Biotechnologische Forschung, Braunschweig, GermanyGoogle Scholar
  8. Friedrich MW (2002) Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol 184:278–289PubMedGoogle Scholar
  9. Fry NK, Fredrickson JK, Fishbain S, Wagner M, Stahl DA (1997) Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers. Appl Environ Microbiol 63:1498–1504PubMedGoogle Scholar
  10. Hanada S, Takaichi S, Matsuura K, Nakamura K (2002) Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193PubMedGoogle Scholar
  11. Hasegawa M, Kishino H (1994) Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree. Mol Biol Evol 11:142–145Google Scholar
  12. Hasegawa M, Kishino H, Yano TA (1985) Dating of the human ape splitting by a molecular clock of mitochondrial-DNA. J Mol Evol 22:160–174PubMedGoogle Scholar
  13. Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50:1601–1609PubMedGoogle Scholar
  14. Henry EA, Devereux R, Maki JS, Gilmour CC, Woese CR, Mandelco L, Schauder R, Remsen CC, Mitchell R (1994) Characterization of a new thermophilic sulfate-reducing bacterium – Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov. – its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the Bacterial domain. Arch Microbiol 161:62–69CrossRefPubMedGoogle Scholar
  15. Huber H, Jannasch H, Rachel R, Fuchs T, Stetter KO (1997) Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst Appl Microbiol 20:374–380Google Scholar
  16. Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3:REVIEW003CrossRefGoogle Scholar
  17. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376PubMedGoogle Scholar
  18. Itoh T, Suzuki K, Sanchez PC, Nakase T (1999) Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 49:1157–1163PubMedGoogle Scholar
  19. Jeanthon C, L'Haridon S, Cueff V, Banta A, Reysenbach AL, Prieur D (2002) Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Evol Microbiol 52:765–772CrossRefPubMedGoogle Scholar
  20. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedGoogle Scholar
  21. Kishino H, Miyata T, Hasegawa M (1990) Maximum-likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 31:151–160Google Scholar
  22. Klein M, Friedrich M, Roger AJ, Hugenholtz P, Fishbain S, Abicht H, Blackall LL, Stahl DA, Wagner M (2001) Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol 183:6028–6035CrossRefPubMedGoogle Scholar
  23. Li L, Kato C, Horikoshi K (1999) Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar Biotechnol 1:391–400PubMedGoogle Scholar
  24. Minz D, Flax JL, Green SJ, Muyzer G, Cohen Y, Wagner M, Rittmann BE, Stahl DA (1999) Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl Environ Microbiol 65:4666–4671PubMedGoogle Scholar
  25. Mori K, Yamamoto H, Kamagata Y, Hatsu M, Takamizawa K (2000) Methanocalculus pumilus sp. nov., a heavy-metal-tolerant methanogen isolated from a waste-disposal site. Int J Syst Evol Microbiol 50:1723–1729PubMedGoogle Scholar
  26. Phelps CD, Kerkhof LJ, Young LY (1998) Molecular characterization of a sulfate-reducing consortium which mineralizes benzene. FEMS Microbiol Ecol 27:269–279Google Scholar
  27. Ravenschlag K, Sahm K, Knoblauch C, Jorgensen BB, Amann R (2000) Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl Environ Microbiol 66:3592–3602CrossRefPubMedGoogle Scholar
  28. Rees GN, Grassia GS, Sheehy AJ, Dwivedi PP, Patel BKC (1995) Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45:85–89Google Scholar
  29. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  30. Shintani T, Liu WT, Hanada S, Kamagata Y, Miyaoka S, Suzuki T, Nakamura K (2000) Micropruina glycogenica gen. nov., sp. nov., a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 50:201–207PubMedGoogle Scholar
  31. Sievert SM, Kuever J (2000) Desulfacinum hydrothermale sp. nov., a thermophilic, sulfate-reducing bacterium from geothermally heated sediments near Milos Island (Greece). Int J Syst Evol Microbiol 50:1239–1246PubMedGoogle Scholar
  32. Sonne-Hansen J, Ahring BK (1999) Thermodesulfobacterium hveragerdense sp. nov. and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulfate-reducing bacteria isolated from a Icelandic hot spring. Syst Appl Microbiol 22:559–564PubMedGoogle Scholar
  33. Stackebrandt E, Sproer C, Rainey FA, Burghardt J, Pauker O, Hippe H (1997) Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47:1134–1139PubMedGoogle Scholar
  34. Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236:822–824Google Scholar
  35. Swofford DL (1998) PAUP*. In: Phylogenetic analysis using parsimony (* and other methods), version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  36. Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297PubMedGoogle Scholar
  37. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  38. Thomsen TR, Finster K, Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67:1646–1656CrossRefPubMedGoogle Scholar
  39. Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982PubMedGoogle Scholar
  40. Wiegel J, Quandt L (1982) Determination of Gram type using the reaction between polymyxin B and lipopolysaccharides of the outer cell wall of whole bacteria. J Gen Microbiol 128:2261–2270PubMedGoogle Scholar
  41. Zeikus JG, Dawson MA, Thompson TE, Ingvorsen K, Hatchikian EC (1983) Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. J Gen Microbiol 129:1159–1169Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Koji Mori
    • 1
  • Hongik Kim
    • 1
  • Takeshi Kakegawa
    • 2
  • Satoshi Hanada
    • 1
  1. 1.Research Institute of Biological ResourcesNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba 305-8566Japan
  2. 2.Tohoku UniversitySendaiJapan

Personalised recommendations