Advertisement

Extremophiles

, Volume 7, Issue 1, pp 9–16 | Cite as

Citrate synthase from Thermus aquaticus: a thermostable bacterial enzyme with a five-membered inter-subunit ionic network

  • Eva Nordberg Karlsson
  • Susan J. Crennell
  • Catherine Higgins
  • Salina Nawaz
  • Louisa Yeoh
  • David W. Hough
  • Michael J. Danson
Original Paper

Abstract.

A bacterial thermostable citrate synthase has been analyzed to investigate the structural basis of its thermostability, and to compare such features with those previously identified in archaeal citrate synthases. The gene encoding the citrate synthase from Thermus aquaticus was identified from a gene library by screening with a PCR fragment amplified from genomic DNA using a primer based on the determined N-terminal amino acid sequence and a citrate synthase consensus primer. Apart from high sequence similarities with citrate synthase sequences within the Thermus/Deinococcus group, the analyzed enzyme has highest similarities with the enzyme from the hyperthermophilic Archaeon Pyrococcus furiosus. The recombinant enzyme is a dimer with high specific activity. Compared to its thermoactivity (Topt at 80°C), the thermal stability of the enzyme is high, as judged from its Tm (101°C), and from irreversible thermal inactivation assays. Molecular modeling of the structure revealed an inter-subunit ion-pair network, comparable in size to the network found in the citrate synthase from P. furiosus; these networks are discussed in relation to the high thermal stability of these bacterial and archaeal enzymes.

Citrate synthase Protein thermostability Thermophile Thermus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Eva Nordberg Karlsson
    • 2
  • Susan J. Crennell
    • 1
  • Catherine Higgins
    • 1
  • Salina Nawaz
    • 1
  • Louisa Yeoh
    • 1
  • David W. Hough
    • 1
  • Michael J. Danson
    • 1
  1. 1.Centre for Extremophile Research, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
  2. 2.Department of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden

Personalised recommendations