Anelastic reorganisation of fibre-reinforced biological tissues

  • Salvatore Di Stefano
  • Melania Carfagna
  • Markus M. Knodel
  • Kotaybah Hashlamoun
  • Salvatore Federico
  • Alfio GrilloEmail author
Special Issue CS Symposium 2016


In this work, we contribute to the study of the structural reorganisation of biological tissues in response to mechanical stimuli. We specialise our investigation to a class of hydrated soft tissues, whose internal structure features reinforcing fibres. These are oriented statistically within the tissue, and their pattern of orientation is such that, at each material point, the tissue is anisotropic. From its natural, stress-free state, the tissue can be distorted anelastically into a global reference configuration, and then deformed under the action of external mechanical loads. The anelastic distortions are responsible for changing irreversibly the internal structure of the tissue, which, in the present context, occurs through both the rearrangement of the bonds among the tissue cells and the deformation-driven reorientation of the fibres. The anelastic strains, in addition, are assumed to model the onset and evolution of microcracks in the tissue, which may be triggered by the mechanical loads applied to the tissue in the case of traumatic events, or diseases. For our purposes, we formulate an anisotropic model of remodelling and we consider a fully isotropic model of structural reorganisation for comparison, with the aim to study if, how, and to what extent the evolution of anelastic distortions is influenced by the tissue’s anisotropy.


Anelastic distortions Fibre-reinforcement Biological tissues Anisotropic media 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ambrosi, D., Guana, F.: Stress-modulated growth. Math. Mech. Solids 12, 319–342 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ambrosi, D., Guillou, A., Martino, E.S.D.: Stress-modulated remodelling of a non-homogeneous body. Biomech. Model. Mechanobiol. 1, 63–76 (2007)Google Scholar
  3. 3.
    Ateshian, G.A.: On the theory of reactive mixtures for modeling biological growth. Biomech. Model. Mechanobiol. 6(6), 423–445 (2007)CrossRefGoogle Scholar
  4. 4.
    Bachrach, N.M., Mow, V.C., Guilak, F.: Incompressibility of the solid matrix of articular cartilage under high hydrostatic pressures. J. Biomech. 31, 445–451 (1998)CrossRefGoogle Scholar
  5. 5.
    Carfagna, M., Grillo, A.: The spherical design algorithm in the numerical simulation of biological tissues with statistical fibre-reinforcement. Comput. Vis. Sci. 18, 1–28 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ciarletta, P., Ambrosi, D., Maugin, G.A., Preziosi, L.: Mechano-transduction in tumour growth modelling. Eur. Phys. J. E 36, 23–31 (2013)CrossRefGoogle Scholar
  7. 7.
    Cleja-Tigoiu, S., Maugin, G.A.: Eshelby’s stress tensors in finite elastoplasticity. Acta Mech. 139, 231–249 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Crevacore, E., Di Stefano, S., Grillo, A.: Coupling among deformation, fluid flow, structural reorganisation and fibre reorientation in fibre-reinforced, transversely isotropic biological tissues. Int. J. Nonlinear Mech. 111, 1–13 (2019).
  9. 9.
    Curnier, A., He, Q.C., Zysset, P.: Conewise linear elastic materials. J. Elast. 37, 1–38 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Di Stefano, S., Ramírez-Torres, A., Penta, R., Grillo, A.: Self-influenced growth through evolving material inhomogeneities. Int. J. Nonlinear Mech. 106, 174–187 (2018). CrossRefGoogle Scholar
  11. 11.
    DiCarlo, A., Quiligotti, S.: Growth and balance. Mech. Res. Commun. 29, 449–456 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Epstein, M.: The split between remodelling and aging. Int. J. Nonlinear Mech. 44(6), 604–609 (2009). CrossRefGoogle Scholar
  13. 13.
    Epstein, M.: Mathematical characterization and identification of remodeling, growth, aging and morphogenesis. J. Mech. Phys. Solids 84, 72–84 (2015). MathSciNetCrossRefGoogle Scholar
  14. 14.
    Epstein, M., Elżanowski, M.: Material Inhomogeneities and their Evolution—A Geometric Approach. Springer, Berlin (2004)zbMATHGoogle Scholar
  15. 15.
    Epstein, M., Maugin, G.A.: On the geometrical material structure of anelasticity. Acta Mech. 115(1–4), 119–131 (1996). MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Epstein, M., Maugin, G.A.: Thermomechanics of volumetric growth in uniform bodies. Int. J. Plast. 16(7–8), 951–978 (2000). CrossRefzbMATHGoogle Scholar
  17. 17.
    Federico, S.: Covariant formulation of the tensor algebra of non-linear elasticity. Int. J. Nonlinear Mech. 47, 273–284 (2012)CrossRefGoogle Scholar
  18. 18.
    Federico, S., Gasser, T.C.: Non-linear elasticity of biological tissues with statistical fibre orientation. J. R. Soc. Interface 7, 955–966 (2010)CrossRefGoogle Scholar
  19. 19.
    Federico, S., Grillo, A.: Elasticity and permeability of porous fibre-reinforced materials under large deformations. Mech. Mater. 44, 58–71 (2012)CrossRefGoogle Scholar
  20. 20.
    Federico, S., Grillo, A.: Linear Elastic Composites with Statistically Oriented Spheroidal Inclusions, pp. 307–346. Springer, Berlin (2018)Google Scholar
  21. 21.
    Federico, S., Grillo, A., La Rosa, G., Giaquinta, G., Herzog, W.: A transversely isotropic, transversely homogeneous microstructural-statistical model of articular cartilage. J. Biomech. 38, 2008–2018 (2005)CrossRefGoogle Scholar
  22. 22.
    Federico, S., Herzog, W.: On the anisotropy and inhomogeneity of permeability in articular cartilage. Biomech. Model. Mechanobiol. 7, 367–378 (2008)CrossRefGoogle Scholar
  23. 23.
    Federico, S., Herzog, W.: On the permeability of fibre-reinforced porous materials. Int. J. Solids Struct. 45, 2160–2172 (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Federico, S., Herzog, W.: Towards an analytical model of soft tissues. J. Biomech. 41, 3309–3313 (2008)CrossRefGoogle Scholar
  25. 25.
    Fung, Y.C.: Biomechanics. Motion, Flow, Stress, and Growth. Springer, New York (1990)zbMATHGoogle Scholar
  26. 26.
    Ganghoffer, J.: On eshelby tensors in the context of the thermodynamics of open systems: application to volumetric growth. Int. J. Eng. Sci. 48(12), 2081–2098 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Garcia, D., Zysset, P.K., Charlebois, M., Curnier, A.: A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomech. Model. Mechanobiol. 8, 149–165 (2009)CrossRefzbMATHGoogle Scholar
  28. 28.
    Garikipati, K., Arruda, E.M., Grosh, K., Narayanan, H., Calve, S.: A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J. Mech. Phys. Solids 52, 1595–1625 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Garikipati, K., Olbering, J.E., Narayanan, H., Arruda, E.M., Grosh, K., Calve, S.: Biological remodelling: stationary energy, configurational change, internal variables and dissipation. J. Mech. Phys. Solids 54, 1493–1515 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)CrossRefGoogle Scholar
  31. 31.
    Giverso, C., Preziosi, L.: Modelling the compression and reorganization of cell aggregates. Math. Med. Biol. 29, 181–204 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Goriely, A.: The Mathematics and Mechanics of Biological Growth. Springer, Heidelberg (2017)CrossRefzbMATHGoogle Scholar
  33. 33.
    Grillo, A., Carfagna, M., Federico, S.: The Darcy–Forchheimer law for modelling fluid flow in biological tissues. Theor. Appl. Mech. TEOPM7 41(4), 283–322 (2014)CrossRefzbMATHGoogle Scholar
  34. 34.
    Grillo, A., Carfagna, M., Federico, S.: Non-Darcian flow in fibre-reinforced biological tissues. Meccanica 52, 3299–3320 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Grillo, A., Carfagna, M., Federico, S.: An Allen–Cahn approach to the remodelling of fibre-reinforced anisotropic materials. J. Eng. Math. 109(1), 139–172 (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Grillo, A., Federico, S., Wittum, G.: Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials. Int. J. Nonlinear Mech. 47, 388–401 (2012)CrossRefGoogle Scholar
  37. 37.
    Grillo, A., Giverso, C., Favino, M., Krause, R., Lampe, M., Wittum, G.: Mass transport in porous media with variable mass. In: Delgado, J.M.P.Q., et al. (eds.) Numerical Analysis of Heat and Mass Transfer in Porous Media, pp. 27–61. Springer, Berlin (2012). CrossRefGoogle Scholar
  38. 38.
    Grillo, A., Guaily, A., Giverso, C., Federico, S.: Non-linear model for compression tests on articular cartilage. J. Biomech. Eng. 137, 071004-1–071004-8 (2015)CrossRefGoogle Scholar
  39. 39.
    Grillo, A., Prohl, R., Wittum, G.: A poroplastic model of structural reorganisation in porous media of biomechanical interest. Contin. Mech. Thermodyn. 28, 579–601 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Grillo, A., Prohl, R., Wittum, G.: A generalised algorithm for anelastic processes in elastoplasticity and biomechanics. Math. Mech. Solids 22(3), 502–527 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Holmes, M.H., Mow, V.C.: The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23, 1145–1156 (1990)CrossRefGoogle Scholar
  42. 42.
    Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16, 1–12 (1983)CrossRefGoogle Scholar
  43. 43.
    Loret, B., Simões, F.M.F.: A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues. Eur. J. Mech. A/Solids 24, 757–781 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Lu, Y., Lekszycki, T.: Modelling of bone fracture healing: influence of gap size and angiogenesis into bioresorbable bone substitute. Math. Mech. Solids 22, 1997–2010 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Lubarda, V.A., Hoger, A.: On the mechanics of solids with a growing mass. Int. J. Solids Struct. 39, 4627–4664 (2002)CrossRefzbMATHGoogle Scholar
  46. 46.
    Lubliner, J.: Plasticity Theory. Dover Publications Inc, Mineola (2008)zbMATHGoogle Scholar
  47. 47.
    Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publications Inc, New York (1983)zbMATHGoogle Scholar
  48. 48.
    Mascheroni, P., Carfagna, M., Grillo, A., Boso, D., Schrefler, B.: An avascular tumor growth model based on porous media mechanics and evolving natural states. Math. Mech. Solids 23(4), 686–712 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Mascheroni, P., Stigliano, C., Carfagna, M., Boso, D.P., Preziosi, L., Decuzzi, P., Schrefler, B.A.: Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model. Biomech. Model. Mechanobiol. 15(5), 1215–1228 (2016). CrossRefGoogle Scholar
  50. 50.
    Maugin, G.A., Epstein, M.: Geometrical material structure of elastoplasticity. Int. J. Plast. 14(1–3), 109–115 (1998)CrossRefzbMATHGoogle Scholar
  51. 51.
    Mićunović, M.V.: Thermomechanics of Viscoplasticity-Fundamentals and Applications. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  52. 52.
    Mollenhauer, J., Aurich, M., Muehleman, C., Khelashvilli, G., Irving, T.C.: X-ray diffraction of the molecular substructure of human articular cartilage. Connect. Tissue Res. 44, 201–207 (2003)CrossRefGoogle Scholar
  53. 53.
    Olsson, T., Klarbring, A.: Residual stresses in soft tissue as a consequence of growth and remodeling: application to an arterial geometry. Eur. J. Mech. A/Solids 27, 959–974 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Preston, S., Elżanowski, M.: Material Uniformity and the Concept of the Stress Space, Chap. Continuous Media with Microstructure, pp. 91–101. Springer, Berlin (2010)CrossRefGoogle Scholar
  55. 55.
    Preziosi, L., Ambrosi, D., Verdier, C.: An elasto–visco–plastic model of cell aggregates. J. Theor. Biol. 262(1), 35–47 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Preziosi, L., Farina, A.: On darcy’s law for growing porous media. Int. J. Nonlinear Mech. 37(3), 485–491 (2002)CrossRefzbMATHGoogle Scholar
  57. 57.
    Preziosi, L., Vitale, G.: A multiphase model of tumor and tissue growth including cell adhesion and plastic reorganization. Math. Models Methods Appl. Sci. 21, 1901–1932 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Rodriguez, E.K., Hoger, A., McCullogh, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467 (1994)CrossRefGoogle Scholar
  59. 59.
    Sadik, S., Yavari, A.: On the origins of the idea of the multiplicative decomposition of the deformation gradient. Math. Mech. Solids 22(4), 771–772 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Taber, L.: Biomechanics of growth, remodeling, and morphogenesis. ASME Appl. Mech. Rev. 48(8), 487–545 (1995)CrossRefGoogle Scholar
  61. 61.
    Tomic, A., Grillo, A., Federico, S.: Poroelastic materials reinforced by statistically oriented fibres—numerical implementation and application to articular cartilage. IMA J. Appl. Math. 79, 1027–1059 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Salvatore Di Stefano
    • 1
  • Melania Carfagna
    • 1
  • Markus M. Knodel
    • 2
  • Kotaybah Hashlamoun
    • 3
    • 4
  • Salvatore Federico
    • 4
  • Alfio Grillo
    • 1
    Email author
  1. 1.Department of Mathematical Sciences (DISMA) “G.L. Lagrange”, “Dipartimento di Eccellenza 2018-2022”Politecnico di TorinoTurinItaly
  2. 2.Department of Mathematics, Chair of Applied Mathematics 1Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.Graduate Programme in Biomedical EngineeringThe University of CalgaryCalgaryCanada
  4. 4.Department of Mechanical and Manufacturing EngineeringThe University of CalgaryCalgaryCanada

Personalised recommendations