Parallelizing spectral deferred corrections across the method

  • Robert Speck
Original Article


In this paper we present two strategies to enable “parallelization across the method” for spectral deferred corrections (SDC). Using standard low-order time-stepping methods in an iterative fashion, SDC can be seen as preconditioned Picard iteration for the collocation problem. Typically, a serial Gauß–Seidel-like preconditioner is used, computing updates for each collocation node one by one. The goal of this paper is to show how this process can be parallelized, so that all collocation nodes are updated simultaneously. The first strategy aims at finding parallel preconditioners for the Picard iteration and we test three choices using four different test problems. For the second strategy we diagonalize the quadrature matrix of the collocation problem directly. In order to integrate non-linear problems we employ simplified and inexact Newton methods. Here, we estimate the speed of convergence depending on the time-step size and verify our results using a non-linear diffusion problem.


Spectral deferred corrections Parallel-in-time integration Preconditioning Simplified Newton 


  1. 1.
    Bouzarth, E.L., Minion, M.L.: A multirate time integrator for regularized Stokeslets. J. Comput. Phys. 229(11), 4208–4224 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Burrage, K.: Parallel methods for initial value problems. Appl. Numer. Math. 11(1–3), 5–25 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Burrage, K.: Parallel methods for ODEs. Adv. Comput. Math. 7, 1–3 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Christlieb, A.J., Macdonald, C.B., Ong, B.W.: Parallel high-order integrators. SIAM J. Sci. Comput. 32(2), 818–835 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7, 105–132 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Feng, Z.: Traveling wave behavior for a generalized fisher equation. Chaos Solitons Fractals 38(2), 481–488 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gander, M.J., Halpern, L., Ryan, J., Tran, T.T.B.: A Direct Solver for Time Parallelization, pp. 491–499. Springer, Cham (2016)zbMATHGoogle Scholar
  9. 9.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics. Springer, Heidelberg, New York (2010)zbMATHGoogle Scholar
  10. 10.
    Huang, J., Jia, J., Minion, M.: Accelerating the convergence of spectral deferred correction methods. J. Comput. Phys. 214(2), 633–656 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jackson, K.R., Kværnø, A., Nørsett, S.P.: The use of butcher series in the analysis of Newton-like iterations in Runge-Kutta formulas. Appl. Numer. Math. 15(3), 341–356 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jackson, K.R., Nørsett, S.P.: The potential for parallelism in Runge-Kutta methods. part 1: RK formulas in standard form. SIAM J. Numer. Anal. 32(1), 49–82 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jay, L.O.: Inexact simplified newton iterations for implicit Runge-Kutta methods. SIAM J. Numer. Anal. 38(4), 1369–1388 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python (2001). Accessed 2 Feb 2017
  15. 15.
    Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. No. 16 in Frontiers in Applied Mathematics. SIAM (1995)Google Scholar
  16. 16.
    Layton, A.T., Minion, M.L.: Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics. J. Comput. Phys. 194(2), 697–715 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lions, J.L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. Comptes Rendus de l’Acadmie des Sciences - Series I - Mathematics 332, 661–668 (2001)zbMATHGoogle Scholar
  18. 18.
    Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1(3), 471–500 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Minion, M.L.: Semi-implicit projection methods for incompressible flow based on spectral deferred corrections. Appl. Numer. Math. 48(3–4), 369–387 (2004). Workshop on Innovative Time Integrators for PDEsGoogle Scholar
  20. 20.
    Ruprecht, D., Speck, R.: Spectral deferred corrections with fast-wave slow-wave splitting. SIAM J. Sci. Comput. 38(4), A2535–A2557 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Speck, R.: Parallel-in-time/pySDC: parallel SDC (2017).
  22. 22.
    Speck, R., Ruprecht, D., Emmett, M., Minion, M., Bolten, M., Krause, R.: A multi-level spectral deferred correction method. BIT Numer. Math. 55(3), 843–867 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Speck, R., Ruprecht, D., Minion, M., Emmett, M., Krause, R.: Inexact spectral deferred corrections. In: Dickopf, T., Gander, J.M., Halpern, L., Pavarino, F.L., Pavarino, F.L. (eds.) Domain Decomposition Methods in Science and Engineering XXII, pp. 389–396. Springer, Berlin (2016)CrossRefGoogle Scholar
  24. 24.
    Tang, T., Xie, H., Yin, X.: High-order convergence of spectral deferred correction methods on general quadrature nodes. J. Sci. Comput. 56(1), 1–13 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Van Der Houwen, P., Sommeijer, B.: Parallel iteration of high-order Runge-Kutta methods with stepsize control. J. Comput. Appl. Math. 29(1), 111–127 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    van der Houwen, P., Sommeijer, B.: Analysis of parallel diagonally implicit iteration of Runge-Kutta methods. Appl. Numer. Math. 11(1), 169–188 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Weiser, M.: Faster SDC convergence on non-equidistant grids by DIRK sweeps. BIT Numer. Math. 55(4), 1219–1241 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Winkel, M., Speck, R., Ruprecht, D.: A high-order Boris integrator. J. Comput. Phys. 295, 456–474 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Xia, Y., Xu, Y., Shu, C.W.: Efficient time discretization for local discontinuous Galerkin methods. Discret. Cont. Dyn. Syst. Ser. B 8(3), 677–693 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jülich Supercomputing CentreForschungszentrum Jülich GmbHJülichGermany

Personalised recommendations