Advertisement

A numerical study of a semi-Lagrangian Parareal method applied to the viscous Burgers equation

  • A. Schmitt
  • M. Schreiber
  • P. Peixoto
  • M. Schäfer
Special Issue Parallel-in-Time Methods

Abstract

This work focuses on the Parareal parallel-in-time method and its application to the viscous Burgers equation. A crucial component of Parareal is the coarse time stepping scheme, which strongly impacts the convergence of the parallel-in-time method. Three choices of coarse time stepping schemes are investigated in this work: explicit Runge–Kutta, implicit–explicit Runge–Kutta, and implicit Runge–Kutta with semi-Lagrangian advection. Manufactured solutions are used to conduct studies, which provide insight into the viability of each considered time stepping method for the coarse time step of Parareal. One of our main findings is the advantageous convergence behavior of the semi-Lagrangian scheme for advective flows.

Keywords

Parareal Burgers’ equation Semi-Lagrangian Runge–Kutta Parallel-in-time 

References

  1. 1.
    Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997).  https://doi.org/10.1016/S0168-9274(97)00056-1 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baffico, L., Bernard, S., Maday, Y., Turinici, G., Zrah, G.: Parallel-in-time molecular-dynamics simulations. Phys. Rev. E 66(057), 701 (2002).  https://doi.org/10.1103/PhysRevE.66.057701 Google Scholar
  3. 3.
    Bal, G.: On the convergence and the stability of the parareal algorithm to solve partial differential equations. In: Kornhuber, R., et al. (eds.) Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol. 40, pp. 426–432. Springer, Berlin (2005).  https://doi.org/10.1007/3-540-26825-1_43 CrossRefGoogle Scholar
  4. 4.
    Barros, S.R., Peixoto, P.S.: Computational aspects of harmonic wavelet Galerkin methods and an application to a precipitation front propagation model. Comput. Math. Appl. 61(4), 1217–1227 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather Rev. 43(4), 163–170 (1915)CrossRefGoogle Scholar
  6. 6.
    Bauer, P., Thorpe, A., Brunet, G.: The quiet revolution of numerical weather prediction. Nature 525(7567), 47–55 (2015)CrossRefGoogle Scholar
  7. 7.
    Bonaventura, L.: An Introduction to Semi-Lagrangian Methods for Geophysical Scale Flows. Lecture Notes ERCOFTAC Leonhard Euler Lectures. SAM-ETH, Zurich (2004)Google Scholar
  8. 8.
    Burgers, J.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948).  https://doi.org/10.1016/S0065-2156(08)70100-5 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Christlieb, A.J., Macdonald, C.B., Ong, B.W.: Parallel high-order integrators. SIAM J. Sci. Comput. 32(2), 818–835 (2010).  https://doi.org/10.1137/09075740X MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Côté, J.: Time-parallel algorithms for weather prediction and climate simulation. https://www.newton.ac.uk/files/seminar/20121023121012359-153396.pdf. Accessed 03 May 2017 (2012)
  11. 11.
    Durran, D.: Numerical Methods for Fluid Dynamics: With Applications to Geophysics. Texts in Applied Mathematics. Springer, New York (2010).  https://doi.org/10.1007/978-1-4419-6412-0 CrossRefzbMATHGoogle Scholar
  12. 12.
    Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000).  https://doi.org/10.1023/A:1022338906936 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7, 105–132 (2012).  https://doi.org/10.2140/camcos.2012.7.105 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Farhat, C., Chandesris, M.: Time-decomposed parallel time-integrators: Theory and feasibility studies for fluid, structure, and fluid-structure applications. Int. J. Numer. Method Eng. 58(9), 1397–1434 (2003).  https://doi.org/10.1002/nme.860 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Friedhoff, S., Falgout, R.D., Kolev, T.V., MacLachlan, S.P., Schroder, J.B.: A multigrid-in-time algorithm for solving evolution equations in parallel. In: Presented at Sixteenth Copper Mountain Conference on Multigrid Methods, Copper Mountain, CO, United States, Mar 17–22, 2013, http://www.osti.gov/scitech/servlets/purl/1073108 (2013)
  16. 16.
    Gander, M.J.: Analysis of the parareal algorithm applied to hyperbolic problems using characteristics. Boletin de la Sociedad Espanola de Matemática Aplicada 42, 21–35 (2008)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gander, M.J.: 50 years of time parallel time integration. In: Carraro, T., Geiger, M., Körkel, S., Rannacher, R. (eds.) Multiple Shooting and Time Domain Decomposition. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23321-5_3 Google Scholar
  18. 18.
    Gander, M.J., Hairer, E.: Analysis for parareal algorithms applied to Hamiltonian differential equations. J. Comput. Appl. Math. 259, Part A(0):2–13. In: Proceedings of the Sixteenth International Congress on Computational and Applied Mathematics (ICCAM-2012), Ghent, Belgium, 9–13 July, 2012 (2014).  https://doi.org/10.1016/j.cam.2013.01.011
  19. 19.
    Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007).  https://doi.org/10.1137/05064607X MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gottlieb, D., Orszag, S.: Numerical Analysis of Spectral Methods: Theory and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1977)CrossRefzbMATHGoogle Scholar
  21. 21.
    Hortal, M.: The development and testing of a new two-time-level semi-lagrangian scheme (SETTLS) in the ECMWF forecast model. Q. J. R. Meteorol. Soc. 128(583), 1671–1687 (2002).  https://doi.org/10.1002/qj.200212858314 CrossRefGoogle Scholar
  22. 22.
    Horton, G., Vandewalle, S.: A space-time multigrid method for parabolic partial differential equations. SIAM J. Sci. Comput. 16(4), 848–864 (1995).  https://doi.org/10.1137/0916050 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Horton, G., Vandewalle, S., Worley, P.: An algorithm with polylog parallel complexity for solving parabolic partial differential equations. SIAM J. Sci. Comput. 16(3), 531–541 (1995).  https://doi.org/10.1137/0916034 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44(1), 139–181 (2003).  https://doi.org/10.1016/S0168-9274(02)00138-1 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kooij, G.L., Botchev, M.A., Geurts, B.J.: A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations. J. Comput. Appl. Math. 316, 229–246 (2017).  https://doi.org/10.1016/j.cam.2016.09.036. (Selected Papers from NUMDIFF-14)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM e-books, Society for Industrial and Applied Mathematics, Philadelphia (2007)CrossRefzbMATHGoogle Scholar
  27. 27.
    Lions, J.L., Maday, Y., Turinici, G.: A parareal in time discretization of PDE’s. Comptes Rendus de l’Académie des Sci.-Ser. I—Math. 332, 661–668 (2001).  https://doi.org/10.1016/S0764-4442(00)01793-6 zbMATHGoogle Scholar
  28. 28.
    Lubich, C., Ostermann, A.: Multi-grid dynamic iteration for parabolic equations. BIT Numer. Math. 27(2), 216–234 (1987).  https://doi.org/10.1007/BF01934186 CrossRefzbMATHGoogle Scholar
  29. 29.
    Peixoto, P.S., Barros, S.R.: On vector field reconstructions for semi-Lagrangian transport methods on geodesic staggered grids. J. Comput. Phys. 273, 185–211 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., et al.: Numerical Recipes, vol. 3. Cambridge University Press, Cambridge (1989)zbMATHGoogle Scholar
  31. 31.
    Reynolds-Barredo, J., Newman, D., Sanchez, R., Jenko, F.: A novel, semilagrangian, coarse solver for the Parareal technique and its application to 2D fluid drift-wave (BETA) and 5D gyrokinetic (GENE), turbulence simulations. In: APS Meeting Abstracts, vol 1, p 8128P (2013)Google Scholar
  32. 32.
    Ruprecht, D., Krause, R.: Explicit parallel-in-time integration of a linear acoustic-advection system. Comput. Fluids 59, 72–83 (2012).  https://doi.org/10.1016/j.compfluid.2012.02.015 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Schreiber, M., Peixoto, P.S., Haut, T., Wingate, B.: Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems. Int. J. High Perform. Comput. Appl. 29(3), 261–273 (2016)Google Scholar
  34. 34.
    Schreiber, M., Peixoto, P., Schmitt, A.: (2017) https://github.com/schreiberx/sweet. Accessed 4 May 2017
  35. 35.
    Staff, G.A., Rønquist, E.M.: Stability of the parareal algorithm. In: Kornhuber, R., et al. (eds.) Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol. 40, pp. 449–456. Springer, Berlin (2005).  https://doi.org/10.1007/3-540-26825-1_46 CrossRefGoogle Scholar
  36. 36.
    Staniforth, A., Côté, J.: Semi-Lagrangian integration schemes for atmospheric models—a review. Mon. Weather Rev. 119(9), 2206–2223 (1991)CrossRefGoogle Scholar
  37. 37.
    Steiner, J., Ruprecht, D., Speck, R., Krause, R.: Convergence of Parareal for the Navier–Stokes Equations Depending on the Reynolds Number, pp. 195–202. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-10705-9_19 zbMATHGoogle Scholar
  38. 38.
    Sutter, H.: The free lunch is over: a fundamental turn toward concurrency in software. Dr Dobbs J. 30(3), 202–210 (2005)Google Scholar
  39. 39.
    Swarztrauber, P.N., Sweet, R.A.: The Fourier and Cyclic Reduction Methods for Solving Poissons Equation. Wiley, New York (1996)Google Scholar
  40. 40.
    Vandewalle, S., Van de Velde, E.: Space-time concurrent multigrid waveform relaxation. Ann. Numer. Math. 1(1–4), 347–360 (1994).  https://doi.org/10.13140/2.1.1146.1761 MathSciNetzbMATHGoogle Scholar
  41. 41.
    Wedi, N.P., Bauer, P., Deconinck, W., Diamantakis, M., Hamrud, M., Kuehnlein, C., Malardel, S., Mogensen, K., Mozdzynski, G., Smolarkiewicz, P.K.: The modelling infrastructure of the integrated forecasting system: recent advances and future challenges. European Centre for Medium-Range Weather Forecasts (2015)Google Scholar
  42. 42.
    Wesseling, P.: Principles of Computational Fluid Dynamics. Springer Series in Computational Mathematics. Springer, Berlin (2009)zbMATHGoogle Scholar
  43. 43.
    Williamson, D.L.: The evolution of dynamical cores for global atmospheric models. J. Meteorol. Soc. Japan Ser. II 85, 241–269 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Numerical Methods in Mechanical Engineering and Graduate School of Computational EngineeringTU DarmstadtDarmstadtGermany
  2. 2.University of ExeterExeterUK
  3. 3.Instituto de Matemática e EstatísticaUniversidade de São PauloSão PauloBrazil

Personalised recommendations