Advertisement

Computing and Visualization in Science

, Volume 18, Issue 6, pp 193–202 | Cite as

Comparison of two local discontinuous Galerkin formulations for the subjective surfaces problem

  • Vadym Aizinger
  • Leon Bungert
  • Michael Fried
Original Article
  • 123 Downloads

Abstract

Based on the local discontinuous Galerkin method, two substantially different mixed formulations for the subjective surfaces problem are compared using a number of numerical tests of various types. The work also performs the energy stability analysis for both schemes.

Keywords

Local discontinuous Galerkin method Image segmentation Subjective surfaces Stability analysis Mixed formulation Divergence form Edge detection 

References

  1. 1.
    Aizinger, V.: A geometry independent slope limiter for the discontinuous Galerkin method. In: Krause, E., Shokin, Y., Resch, M., Kröner, D., Shokina, N. (eds.) Computational Science and High Performance Computing IV, Volume 115 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 207–217. Springer, Berlin (2011)Google Scholar
  2. 2.
    Aizinger, V., Dawson, C.: The local discontinuous Galerkin method for three-dimensional shallow water flow. Comput. Methods Appl. Mech. Eng. 196(4), 734746 (2007)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Aizinger, V., Kosik, A., Kuzmin, D., Reuter, B.: Anisotropic slope limiting for discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 84(9), 543565 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aizinger, V., Rupp, A., Schütz, J., Knabner, P.: Analysis of a mixed discontinuous Galerkin method for instationary Darcy flow. Comput. Geosci. 22(1), 179–194 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Baswaraj, D., Govardhan, A., Premchand, P.: Active contours and image segmentation: the current state of the art. Glob. J. Comput. Sci. Technol. 12(11-F) (2012). https://computerresearch.org/index.php/computer/article/view/568
  7. 7.
    Belhachmi, Z., Bernardi, C., Deparis, S.: Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem. Numer. Math. 105(2), 217–247 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bungert, L., Aizinger, V., Fried, M.: A discontinuous Galerkin method for the subjective surfaces problem. J. Math. Imaging Vis. 58(1), 147–161 (2017)CrossRefGoogle Scholar
  9. 9.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)zbMATHCrossRefGoogle Scholar
  10. 10.
    Chan, T.F., Moelich, M., Sandberg, B.: Some recent developments in variational image segmentation. In: Tai, X.-C., Lie, K.-A., Chan, T.F., Osher, S. (eds.) Image Processing Based on Partial Differential Equations, pp. 175–210. Springer, New York (2007)CrossRefGoogle Scholar
  11. 11.
    Chan, T.F., Sandberg, B., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000)CrossRefGoogle Scholar
  12. 12.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Cockburn, B., Dawson, C.: Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions. In: Whiteman, J. (eds.) Proceedings of the 10th Conference on the Mathematics of Finite Elements and Applications, pp. 225–238. Elsevier, Amsterdam (2000)Google Scholar
  14. 14.
    Cockburn, B., Shu, C.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Corsaro, S., Mikula, K., Sarti, A., Sgallari, F.: Semi-implicit covolume method in 3D image segmentation. SIAM J. Sci. Comput. 28, 2248–2265 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Feng, X., Li, Y.: Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen–Cahn equation and the mean curvature flow. IMA J. Numer. Anal. 35, 1622–1651 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Frank, F., Reuter, B., Aizinger, V.: FESTUNG—The Finite Element Simulation Toolbox for UNstructured Grids. http://www.math.fau.de/FESTUNG. Accessed 15 Feb 2018
  18. 18.
    Frank, F., Reuter, B., Aizinger, V., Knabner, P.: FESTUNG: a MATLAB/GNU Octave toolbox for the discontinuous Galerkin method, part I—diffusion operator. Comput. Math. Appl. 70(1), 11–46 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Fried, M.: Berechnung des Krmmungsflusses von Niveauflächen (in German). Master’s thesis, University of Freiburg (1993)Google Scholar
  20. 20.
    Fried, M.: Multichannel image segmentation using adaptive finite elements. Comput. Vis. Sci. 12(3), 125–135 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Fried, M., Mikula, K.: Efficient subjective surfaces segmentation by adaptive finite elements. In: Lecture Presented at the IMI International Workshop on Computational Photography and Aesthetics, 12 (2009)Google Scholar
  22. 22.
    Frolkovič, P., Mikula, K.: Flux-based level set method: a finite volume method for evolving interfaces (2003). https://doi.org/10.1016/j.apnum.2006.06.002
  23. 23.
    Frolkovič, P., Mikula, K.: High-resolution flux-based level set method. SIAM J. Sci. Comput. 29(2), 579–597 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Jaust, A., Reuter, B., Aizinger, V., Schütz, J., Knabner, P.: FESTUNG: a MATLAB/GNU Octave toolbox for the discontinuous Galerkin method, part III—hybridized discontinuous Galerkin (HDG) formulation. Submitted to Computers & Mathematics with Applications (2018)Google Scholar
  25. 25.
    Kanizsa, G.: Subjective contours. Sci. Am. 234(4), 48–52 (1976)CrossRefGoogle Scholar
  26. 26.
    Karasözen, B., Filibelioğlu, A.S., Uzunca, M.: Energy stable discontinuous Galerkin finite element method for the Allen–Cahn equation. arXiv preprint arXiv:1409.3997 (2014)
  27. 27.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)zbMATHCrossRefGoogle Scholar
  28. 28.
    Kuzmin, D.: A vertex-based hierarchical slope limiter for adaptive discontinuous Galerkin methods. J. Comput. Appl. Math. 233(12), 3077–3085 (2010). Finite Element Methods in Engineering and Science (FEMTEC 2009)Google Scholar
  29. 29.
    Mikula, K., Peyriéras, N., Remešíková, M., Sarti, A.: 3D embryogenesis image segmentation by the generalized subjective surface method using the finite volume technique. In: Eymard, R., Hérard, J.-M. (eds.) Finite Volumes for Complex Applications V, pp. 585–592. Wiley, New York (2008)Google Scholar
  30. 30.
    Mikula, K., Sarti, A.: Parallel co-volume subjective surface method for 3D medical image segmentation. In: Suri, J.S., Farag, A.A. (eds.) Deformable Models, Topics in Biomedical Engineering. International Book Series, pp. 123–160. Springer, New York (2007)Google Scholar
  31. 31.
    Mikula, K., Sarti, A., Sgallari, F.: Co-volume level set method in subjective surface based medical image segmentation. In: Suri, J.S., Wilson, D.L., Laxminarayan, S. (eds.) Handbook of Biomedical Image Analysis, pp. 583–626. Springer, New York (2005)CrossRefGoogle Scholar
  32. 32.
    Mirabito, C., Dawson, C., Aizinger, V.: An a priori error estimate for the local discontinuous Galerkin method applied to two-dimensional shallow water and morphodynamic flow. Numer. Methods Partial Differ. Equ. 31(2), 397–421 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces (Applied Mathematical Sciences), 2003 Edition. Springer, New York (2002)Google Scholar
  35. 35.
    Reed, H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, NM (1973)Google Scholar
  36. 36.
    Reuter, B., Aizinger, V., Wieland, M., Frank, F., Knabner, P.: FESTUNG: a MATLAB/GNU Octave toolbox for the discontinuous Galerkin method, part II—advection operator and slope limiting. Comput. Math. Appl. 72(7), 1896–1925 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Sapiro, G.: Geometric Partial Differential Equations and Image Analysis, 1st edn. Cambridge University Press, Cambridge (2001)zbMATHCrossRefGoogle Scholar
  38. 38.
    Sarti, A., Citti, G.: Subjective surfaces and riemannian mean curvature flow graphs. Acta Math. Univ. Comen. 70, 85–104 (2001)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Sarti, A., Malladi, R., Sethian, J.A.: Subjective surfaces: a method for completing missing boundaries. Proc. Natl. Acad. Sci. 97(12), 6258–6263 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Sarti, A., Malladi, R., Sethian, J.A.: Subjective surfaces: a geometric model for boundary completition. Int. J. Comput. Vis. 46(3), 201–221 (2002)zbMATHCrossRefGoogle Scholar
  41. 41.
    Sethian, J.A.: Numerical algorithms for propagating interfaces: Hamilton–Jacobi equations and conservation laws. J. Differ. Geom. 31(1), 131–161 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, 2nd edn. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  43. 43.
    Xia, Y., Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Cahn–Hilliard type equations. J. Comput. Phys. 227(1), 472–491 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Xia, Y., Xu, Y., Shu, C.-W.: Application of the local discontinuous Galerkin method for the Allen–Cahn/Cahn–Hilliard system. Commun. Comput. Phys 5, 821–835 (2009)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Xu, Y., Shu, C.-W.: Local discontinuous Galerkin method for surface diffusion and Willmore flow of graphs. J. Sci. Comput. 40(1–3), 375–390 (2009)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  2. 2.Applied Mathematics 1Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
  3. 3.Applied Mathematics 3Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations