Numerical methods for fractional diffusion
Special Issue FEM Symposium 2017
First Online:
- 735 Downloads
- 18 Citations
Abstract
We present three schemes for the numerical approximation of fractional diffusion, which build on different definitions of such a non-local process. The first method is a PDE approach that applies to the spectral definition and exploits the extension to one higher dimension. The second method is the integral formulation and deals with singular non-integrable kernels. The third method is a discretization of the Dunford–Taylor formula. We discuss pros and cons of each method, error estimates, and document their performance with a few numerical experiments.
References
- 1.Abe, S., Thurner, S.: Anomalous diffusion in view of Einstein’s 1905 theory of Brownian motion. Phys. A Stat. Mech. Appl. 356(2–4), 403–407 (2005)CrossRefGoogle Scholar
- 2.Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55 of National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. (1964)Google Scholar
- 3.Acosta, G., Bersetche, F., Borthagaray, J.P.: Finite element approximations for fractional evolution problems. arXiv:1705.09815v1 (2017)
- 4.Acosta, G., Bersetche, F.M., Borthagaray, J.P.: A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 74(4), 784–816 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55(2), 472–495 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Acosta, G., Borthagaray, J.P., Bruno, O., Maas, M.: Regularity theory and high order numerical methods for one-dimensional fractional-Laplacian equations. Math. Comput. (2017). https://doi.org/10.1090/mcom/3276
- 7.Acosta, G., Borthagaray, J.P., Heuer, N.: Finite element approximations for the nonhomogeneous fractional Dirichlet problem. arXiv:1709.06592v1 (2017)
- 8.Ainsworth, M., Glusa, C.: Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains. arXiv:1708.01923v1 (2017)
- 9.Antil, H., Otárola, E.: A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J. Control Optim. 53(6), 3432–3456 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Antil, H., Otárola, E.: An a posteriori error analysis for an optimal control problem involving the fractional Laplacian. IMA J. Numer. Anal. 38(1), 198–266 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Antil, H., Otárola, E., Salgado, A.J.: Optimization with respect to order in a fractional diffusion model: analysis, approximation and algorithm aspects. arXiv:1612.08982v1 (2016)
- 12.Antil, H., Otárola, E., Salgado, A.J.: A space-time fractional optimal control problem: analysis and discretization. SIAM J. Control Optim. 54(3), 1295–1328 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Babuška, I., Miller, A.: A feedback finite element method with a posteriori error estimation. I. The finite element method and some basic properties of the a posteriori error estimator. Comput. Methods Appl. Mech. Eng. 61(1), 1–40 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991)Google Scholar
- 15.Bacuta, C., Bramble, J.H., Pasciak, J.E.: New interpolation results and applications to finite element methods for elliptic boundary value problems. East West J. Numer. Math. 3, 179–198 (2001)MathSciNetzbMATHGoogle Scholar
- 16.Bangerth, W., Hartmann, R., Kanschat, G.: deal. II—Diferential Equations Analysis Library. Technical Reference, http://www.dealii.org
- 17.Bangerth, W., Hartmann, R., Kanschat, G.: deal. II—a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33(4), Art. 24, 27 (2007)Google Scholar
- 18.Banjai, L., Melenk, J.M., Nochetto, R.H., Otárola, E., Salgado, A.J., Schwab, C.: Tensor FEM for spectral fractional diffusion. arXiv:1707.07367v1 (2017)
- 19.Bertoin, J.: Lévy Processes, Volume 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1996)Google Scholar
- 20.Birman, M.Š., Solomjak, M.Z.: Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve. Leningrad. University of Leningrad (1980)Google Scholar
- 21.Bonito, A., Guermond, J.-L., Luddens, F.: Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains. J. Math. Anal. Appl. 408(2), 498–512 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Bonito, A., Lei, W., Pasciak, J.E.: The approximation of parabolic equations involving fractional powers of elliptic operators. J. Comput. Appl. Math. 315, 32–48 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Bonito, A., Lei, W., Pasciak, J.E.: Numerical approximation of space-time fractional parabolic equations. Comput. Methods Appl. Math. 17(4), 679–705 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Bonito, A., Lei, W., Pasciak, J.E.: Numerical approximation of the integral fractional Laplacian. arXiv:1707.04290v1 (2017)
- 25.Bonito, A., Pasciak, J.: Numerical approximation of fractional powers of elliptic operators. Math. Comput. 84(295), 2083–2110 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Bonito, A., Pasciak, J.E.: Numerical approximation of fractional powers of regularly accretive operators. IMA J. Numer. Anal. 37(3), 1245–1273 (2017)MathSciNetzbMATHGoogle Scholar
- 27.Borthagaray, J.P., Ciarlet, P. Jr.: Nonlocal models for interface problems between dielectrics and metamaterials. In: 11th International Congress on Engineered Material Platforms for Novel Wave Phenomena (2017)Google Scholar
- 28.Borthagaray, J.P., Del Pezzo, L.M., Martínez, S.: Finite element approximation for the fractional eigenvalue problem. arXiv:1603.00317v2 (2017)
- 29.Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Optimal Control and Partial, Differential Equations, pp. 439–455. IOS Press, Amsterdam (2001)Google Scholar
- 30.Brändle, C., Colorado, E., de Pablo, A., Sánchez, U.: A concave–convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 143(1), 39–71 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 31.Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Volume 15 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2008)CrossRefGoogle Scholar
- 32.Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439(7075), 462–465 (2006)CrossRefGoogle Scholar
- 33.Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications, Volume 20 of Lecture Notes of the Unione Matematica Italiana. Springer, Unione Matematica Italiana, Berlin, Bologna (2016)Google Scholar
- 34.Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 35.Caffarelli, L., Figalli, A.: Regularity of solutions to the parabolic fractional obstacle problem. J. Reine Angew. Math. 680, 191–233 (2013)MathSciNetzbMATHGoogle Scholar
- 36.Caffarelli, L., Stinga, P.: Fractional elliptic equations, Caccioppoli estimates, and regularity. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 33, 767–807 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Caffarelli, L., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 38.Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial. Differ. Equ. 32(7–9), 1245–1260 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 39.Caffarelli, L., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. (2) 171(3), 1903–1930 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 40.Capella, A., Dávila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Partial Differ. Equ. 36(8), 1353–1384 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 41.Carmichael, B., Babahosseini, H., Mahmoodi, S.N., Agah, M.: The fractional viscoelastic response of human breast tissue cells. Phys. Biol. 12(4), 046001 (2015)CrossRefGoogle Scholar
- 42.Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 305–332 (2002)CrossRefGoogle Scholar
- 43.Chen, L., Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion: a posteriori error analysis. J. Comput. Phys. 293, 339–358 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 44.Chen, L., Nochetto, R.H., Otárola, E., Salgado, A.J.: Multilevel methods for nonuniformly elliptic operators and fractional diffusion. Math. Comput. 85(302), 2583–2607 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 45.Chen, Z.Q., Song, R.: Hardy inequality for censored stable processes. Tohoku Math. J. (2) 55(3), 439–450 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 46.Ciarlet Jr., P.: Analysis of the Scott–Zhang interpolation in the fractional order Sobolev spaces. J. Numer. Math. 21(3), 173–180 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 47.Čiegis, R., Starikovičius, V., Margenov, S., Kriauzienė, R.: Parallel solvers for fractional power diffusion problems. Concurr. Comput. Pract. Exp. 29, e4216 (2017)CrossRefGoogle Scholar
- 48.Costabel, M., Dauge, M.: General edge asymptotics of solutions of second-order elliptic boundary value problems I. Proc. R. Soc. Edinb. Sect. A Math. 123(1), 109–155 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
- 49.Cushman, J., Glinn, T.: Nonlocal dispersion in media with continuously evolving scales of heterogeneity. Trans. Porous Media 13, 123–138 (1993)CrossRefGoogle Scholar
- 50.Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988)CrossRefGoogle Scholar
- 51.D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66(7), 1245–1260 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 52.Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 53.Dipierro, S., Ros-Oton, X., Valdinoci, E.: Nonlocal problems with Neumann boundary conditions. Rev. Mat. Iberoam. 33(2), 377–416 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 54.Duoandikoetxea, J.: Fourier Analysis, Volume 29 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2001). Translated and revised from the 1995 Spanish original by David Cruz-UribeGoogle Scholar
- 55.Durán, R.G., Lombardi, A.L.: Error estimates on anisotropic \(Q_1\) elements for functions in weighted Sobolev spaces. Math. Comput. 74(252), 1679–1706 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
- 56.Dyda, B.: A fractional order Hardy inequality. Ill. J. Math. 48(2), 575–588 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
- 57.Dyda, B., Kuznetsov, A., Kwaśnicki, M.: Eigenvalues of the fractional Laplace operator in the unit ball. J. Lond. Math. Soc. 95(2), 500–518 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 58.Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations, pp. 142–155. Springer, Berlin (1988)CrossRefGoogle Scholar
- 59.Einstein, A.: Investigations on the theory of the Brownian movement. Dover Publications Inc., New York, Edited with notes by R. Fürth, Translated by A. D. Cowper (1956)Google Scholar
- 60.Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7(1), 77–116 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
- 61.Faermann, B.: Localization of the Aronszajn–Slobodeckij norm and application to adaptive boundary element methods. II. The three-dimensional case. Numer. Math. 92(3), 467–499 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 62.Getoor, R.K.: First passage times for symmetric stable processes in space. Trans. Am. Math. Soc. 101, 75–90 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
- 63.Gol’dshtein, V., Ukhlov, A.: Weighted Sobolev spaces and embedding theorems. Trans. Am. Math. Soc. 361(7), 3829–3850 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 64.Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag–Leffler Functions, Related Topics and Applications. Springer Monographs in Mathematics. Springer, Heidelberg (2014)zbMATHGoogle Scholar
- 65.Grisvard, P.: Elliptic problems in nonsmooth domains, Volume 69 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Reprint of the 1985 original [MR0775683], With a foreword by Susanne C. Brenner (2011)Google Scholar
- 66.Grubb, G.: Fractional Laplacians on domains, a development of Hörmander’s theory of \(\mu \)-transmission pseudodifferential operators. Adv. Math. 268, 478–528 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 67.Grubb, G.: Spectral results for mixed problems and fractional elliptic operators. J. Math. Anal. Appl. 421(2), 1616–1634 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 68.Hörmander, L.: Ch. II, Boundary problems for “classical” pseudo-differential operators. http://www.math.ku.dk/~grubb/LH65.pdf (1965)
- 69.Huang, Y., Oberman, A.M.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52(6), 3056–3084 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 70.Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38(1), A146–A170 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 71.Jochmann, F.: An \({H}^s\)-regularity result for the gradient of solutions to elliptic equations with mixed boundary conditions. J. Math. Anal. Appl. 238, 429–450 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
- 72.Kato, T.: Note on fractional powers of linear operators. Proc. Jpn. Acad. 36, 94–96 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
- 73.Kato, T.: Fractional powers of dissipative operators. J. Math. Soc. Jpn. 13, 246–274 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
- 74.Kellogg, R.B.: Interpolation between subspaces of a Hilbert space. Technical report, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics, Technical note BN-719 (1971)Google Scholar
- 75.Kilpeläinen, T.: Weighted Sobolev spaces and capacity. Ann. Acad. Sci. Fenn. Ser. AI Math. 19(1), 95–113 (1994)MathSciNetzbMATHGoogle Scholar
- 76.Krasnosel’skiĭ, M.A., Rutickiĭ, J.B.: Convex functions and Orlicz spaces. Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen (1961)Google Scholar
- 77.Kufner, A.: Weighted Sobolev spaces. Wiley, New York (1985). Translated from the CzechGoogle Scholar
- 78.Kufner, A., Opic, B.: How to define reasonably weighted Sobolev spaces. Comment. Math. Univ. Carolin. 25(3), 537–554 (1984)MathSciNetzbMATHGoogle Scholar
- 79.Kyprianou, A., Osojnik, A., Shardlow, T.: Unbiased walk-on-spheres’ Monte Carlo methods for the fractional Laplacian. IMA J. Numer. Anal. (2017). https://doi.org/10.1093/imanum/drx042
- 80.Landkof, N.S.: Foundations of modern potential theory. Springer, New York (1972). Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180Google Scholar
- 81.Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268(4), 298–305 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
- 82.Lubich, C.: Convolution quadrature and discretized operational calculus I. Numer. Math. 52(2), 129–145 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
- 83.Lunardi, A.: Interpolation theory. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie). [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 2nd edn. Edizioni della Normale, Pisa (2009)Google Scholar
- 84.Lund, J., Bowers, K.L.: Sinc Methods for Quadrature and Differential Equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)zbMATHCrossRefGoogle Scholar
- 85.McCay, B.M., Narasimhan, M.N.L.: Theory of nonlocal electromagnetic fluids. Arch. Mech. 33(3), 365–384 (1981)MathSciNetzbMATHGoogle Scholar
- 86.McIntosh, A.: The square root problem for elliptic operators: a survey. In: Fujita, H., Ikebe, T., Kuroda, S.T. (eds.) Functional-Analytic Methods for Partial Differential Equations (Tokyo, 1989), Volume 1450 of Lecture Notes in Mathematics, pp. 122–140. Springer, Berlin (1990)Google Scholar
- 87.McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
- 88.Meidner, D., Pfefferer, J., Schürholz, K., Vexler, B.: \(hp\)-finite elements for fractional diffusion. arXiv:1706.04066v1 (2017)
- 89.Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37(31), R161–R208 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
- 90.Morin, P., Nochetto, R.H., Siebert, K.G.: Local problems on stars: a posteriori error estimators, convergence, and performance. Math. Comput. 72(243), 1067–1097 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 91.Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
- 92.Musina, R., Nazarov, A.I.: On fractional Laplacians. Commun. Partial Differ. Equ. 39(9), 1780–1790 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 93.Nazarov, S., Plamenevsky, B.: Elliptic Problems in Domains with Piecewise Smooth Boundaries. De Gruyter Expositions in Mathematics. De Gruyter, Berlin (1994)zbMATHCrossRefGoogle Scholar
- 94.Nochetto, R.H., Otárola, E., Salgado, A.J.: Convergence rates for the classical, thin and fractional elliptic obstacle problems. Philos. Trans. Roy. Soc. A 373(2050), 20140449 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 95.Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 96.Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to numerical fractional diffusion. In: Proceedings of the 8th International Congress on Industrial and Applied Mathematics, pp. 211–236. Higher Ed. Press, Beijing (2015)Google Scholar
- 97.Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal. 54(2), 848–873 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 98.Nochetto, R.H., Otárola, E., Salgado, A.J.: Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications. Numer. Math. 132(1), 85–130 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 99.Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R., Kunoth, A. (eds.) Multiscale Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar
- 100.Nochetto, R.H., Veeser, A.: Primer of adaptive finite element methods. In: Naldi, G., Russo, G. (eds.) Multiscale and Adaptivity: Modeling, Numerics and Applications. CIME Lectures. Springer, Berlin (2011)Google Scholar
- 101.Nochetto, R.H., von Petersdorff, T., Zhang, C.-S.: A posteriori error analysis for a class of integral equations and variational inequalities. Numer. Math. 116(3), 519–552 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 102.Olver, F.W.J.: Asymptotics and Special Functions. AKP Classics. A K Peters, Ltd., Wellesley (1997). Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)]Google Scholar
- 103.Otárola, E.: A PDE approach to numerical fractional diffusion. ProQuest LLC, Ann Arbor (2014). Thesis Ph.D., University of Maryland, College ParkGoogle Scholar
- 104.Otárola, E.: A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains. ESAIM Math. Model. Numer. Anal. 51(4), 1473–1500 (2017)MathSciNetzbMATHGoogle Scholar
- 105.Otárola, E., Salgado, A.J.: Finite element approximation of the parabolic fractional obstacle problem. SIAM J. Numer. Anal. 54(4), 2619–2639 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 106.Otárola, E., Salgado, A.J.: Regularity of solutions to space–time fractional wave equations: a PDE approach. arXiv:1711.06186 (2017)
- 107.Otárola, E., Salgado, A.J.: Sparse optimal control for fractional diffusion. Comput. Math. Appl. Math. 18(1), 95–110 (2018)MathSciNetzbMATHGoogle Scholar
- 108.Ros-Oton, X.: Nonlocal elliptic equations in bounded domains: a survey. Publ. Math. 60(1), 3–26 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 109.Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101(3), 275–302 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 110.Ros-Oton, X., Serra, J.: Local integration by parts and Pohozaev identities for higher order fractional Laplacians. Discrete Contin. Dyn. Syst. 35(5), 2131–2150 (2015)MathSciNetzbMATHGoogle Scholar
- 111.Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 112.Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993). Theory and Applications, Edited and with a foreword by S. M. Nikol\(\prime \)skiĭ, Translated from the 1987 Russian original, Revised by the authorsGoogle Scholar
- 113.Sauter, S.A., Schwab, C.: Boundary Element Methods, Volume 39 of Springer Series in Computational Mathematics. Springer, Berlin (2011). Translated and expanded from the 2004 German originalGoogle Scholar
- 114.Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
- 115.Servadei, R., Valdinoci, E.: On the spectrum of two different fractional operators. Proc. R. Soc. Edinb. Sect. A 144(4), 831–855 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 116.Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 117.Sims, D., Southall, E., Humphries, N., Hays, G., Bradshaw, C., Pitchford, J., James, A., Ahmed, M., Brierley, A., Hindell, M., Morritt, D., Musyl, M., Righton, D., Shepard, E., Wearmouth, V., Wilson, R., Witt, M., Metcalfe, J.: Scaling laws of marine predator search behaviour. Nature 451(7182), 1098–1102 (2008)CrossRefGoogle Scholar
- 118.Sprekels, J., Valdinoci, E.: A new type of identification problems: optimizing the fractional order in a nonlocal evolution equation. SIAM J. Control Optim. 55(1), 70–93 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 119.Stinga, P.R., Torrea, J.L.: Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35(11), 2092–2122 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 120.Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces, Volume 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin (2007)Google Scholar
- 121.Taylor, M.E.: Pseudodifferential Operators. Princeton Mathematical Series, vol. 34. Princeton University Press, Princeton (1981)Google Scholar
- 122.Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces, Volume of Lecture Notes in Mathematics. Springer, Berlin (2000)zbMATHCrossRefGoogle Scholar
- 123.Višik, M.I., Èskin, G.I.: Elliptic convolution equations in a bounded region and their applications. Uspehi Mat. Nauk. 22:1(133), 15–76 (1967)MathSciNetGoogle Scholar
- 124.Yosida, K.: Functional Analysis (Die Grundlehren der mathematischen Wissenschaften, Band 123), 2nd edn. Springer, New York (1968)Google Scholar
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2018