Advertisement

Numerical solution of a phase field model for polycrystallization processes in binary mixtures

  • Ronald H. W. HoppeEmail author
  • James J. Winkle
Original Article
  • 1 Downloads

Abstract

We consider the numerical solution of a phase field model for polycrystallization in the solidification of binary mixtures in a domain \( \varOmega \subset \mathbb {R}^2\). The model is based on a free energy in terms of three order parameters: the local orientation \(\varTheta \) of the crystals, the local crystallinity \(\phi \), and the concentration c of one of the components of the binary mixture. The equations of motion are given by an initial-boundary value problem for a coupled system of partial differential equations consisting of a regularized second order total variation flow in \( \varTheta \), an \(L^2\) gradient flow in \(\phi \), and a \(W^{1,2}(\varOmega )^*\) gradient flow in c. Based on an implicit discretization in time by the backward Euler scheme, we suggest a splitting method such that the three semidiscretized equations can be solved separately and prove existence of a solution. As far as the discretization in space is concerned, the fourth order Cahn–Hilliard type equation in c is taken care of by a \(\hbox {C}^0\) Interior Penalty Discontinuous Galerkin approximation which has the advantage that the same finite element space can be used as well for the spatial discretization of the equations in \( \varTheta \) and \( \phi \). The fully discretized equations represent parameter dependent nonlinear algebraic systems with the discrete time as a parameter. They are solved by a predictor corrector continuation strategy featuring an adaptive choice of the time-step. Numerical results illustrate the performance of the suggested numerical method.

Notes

References

  1. 1.
    Andreu, F., Caselles, V., Mazón, J.M.: Existence and uniqueness of solutions for a parabolic quasilinear problem for linear growth functionals with L1 data. Math. Ann. 322, 139–206 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Andreu-Vaillo, F., Caselles, V., Mazón, J.M.: Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Birkhäuser, Basel (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Andreu, F., Mazòn, J.M., Segura, S., Toledo, J.: Existence and uniqueness for a degenerate parabolic equation with L1-data. Trans. Am. Math. Soc. 315, 285–306 (1999)CrossRefzbMATHGoogle Scholar
  4. 4.
    Baldi, A.: Weighted BV functions. Houst. J. Math. 27, 1–23 (2001)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bartels, S.: Methods for Nonlinear Partial Differential Equations. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bartkowiak, L., Pawlow, I.: The Cahn–Hilliard–Gurtin system coupled with elasticity. Control Cybern. 34, 1005–1043 (2005)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwend. 22, 751–756 (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bellettini, G., Novaga, M., Paolini, M.: On a crystalline variational problem, part I: first variation and global L1-regularity. Arch. Ration. Mech. Anal. 157, 165–191 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bellettini, G., Novaga, M., Paolini, M.: On a crystalline variational problem, part II: BV regularity and structure of minimizers on facets. Arch. Ration. Mech. Anal. 157, 193–217 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bonetti, E., Colli, P., Dreyer, W., Giliardi, G., Schimperna, G., Sprekels, J.: On a model for phase separation in binary alloys driven by mechanical effects. Physica D 165, 48–65 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Braess, D., Hoppe, R.H.W., Linsenmann, C.: A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation. ESAIM: M2AN (2016).  https://doi.org/10.1051/m2an/2016074 Google Scholar
  12. 12.
    Brenner, S.C., Sung, L.-Y.: \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22(23), 83–118 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Burger, M., Frick, K., Osher, S., Scherzer, O.: Inverse total variation flow. Multiscale Model. Simul. 6, 365–395 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Carrive, M., Miranville und, A., Piétrus, A.: The Cahn–Hilliard equation for deformable elastic continua. Adv. Math. Sci. Appl. 10, 539–569 (2000)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Carrive, M., Miranville, A., Piétrus, A., Rakotoson, J.: The Cahn-Hilliard equation for anisotropic deformable elastic continuum. Appl. Math. Lett. 12, 23–28 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Deuflhard, P.: Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms. Springer, Berlin (2004)zbMATHGoogle Scholar
  17. 17.
    Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191, 3669–3750 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Feng, X., von Oehsen, M., Prohl, A.: Rate of convergence of regularization procedures and finite element approximations for the total variation flow. Numer. Math. 100, 441–456 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Garcke, H.: On Cahn–Hilliard systems with elasticity. Proc. R. Soc. Edinb. Sect. A Math. 133, 307–331 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Garcke, H.: On a Cahn–Hilliard system for phase separation with elastic misfit. Ann. Inst. Henri Poincaré (C) Nonlinear Anal. 22, 165–185 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel (1984)CrossRefzbMATHGoogle Scholar
  22. 22.
    Gránásy, L., Börzsönyi, L., Pusztai, T.: Nucleation and bulk crystallization in binary phase field theory. Phys. Rev. Lett. 88, 206105 (2002)CrossRefzbMATHGoogle Scholar
  23. 23.
    Gránásy, L., Börzsönyi, L., Pusztai, T.: Crystal nucleation and growth in binary phase-field theory. J. Cryst. Growth 237, 1813–1817 (2002)CrossRefzbMATHGoogle Scholar
  24. 24.
    Gránásy, L., Pusztai, T., Börzsönyi, L., Warren, J.A., Douglas, J.F.: A general mechanism of polycrystalline growth. Nat. Mater. 3, 645–650 (2004)CrossRefGoogle Scholar
  25. 25.
    Gránásy, L., Pusztai, T., Warren, J.A.: Modeling polycrystalline solidification using phase field theory. J. Phys. Condens. Matter 16, R1205–R1235 (2004)CrossRefGoogle Scholar
  26. 26.
    Gránásy, L., Pusztai, T., Saylor, D., Warren, J.A.: Phase field theory of heterogeneous crystal nucleation. Phys. Rev. Lett. 98, 035703 (2007)CrossRefGoogle Scholar
  27. 27.
    Gránásy, L., Pusztai, T., Tegze, G., Warren, J.A., Douglas, J.F.: Growth and form of spherulites. Phys. Rev. E 72, 011605 (2004)CrossRefGoogle Scholar
  28. 28.
    Gránásy, L., Ratkai, L., Szallas, A., Korbuly, B., Toth, G., Környei, L., Pusztai, T.: Phase-field modeling of polycrystalline solidification: from needle crystals to spherulites: a review. Metall. Mater. Trans. A 45A, 1694–1719 (2014)CrossRefGoogle Scholar
  29. 29.
    Gurtin, M.E.: Generalised Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Hoppe, R.H.W., Linsenmann, C.: An adaptive Newton continuation strategy for the fully implicit finite element immersed boundary method. J. Comput. Phys. 231, 4676–4693 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kobayashi, R., Warren, J.A., Carter, W.C.: A continuum model of grain boundaries. Phys. D Nonlinear Phenom. 140, 141–150 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Larché, F.C., Cahn, J.W.: The effect of self-stress on diffusion in solids. Acta Metall. 30, 1835–1845 (1982)CrossRefGoogle Scholar
  33. 33.
    Larché, F.C., Cahn, J.W.: The interactions of composition and stress in crystalline solids. Acta Metall. 33, 331–357 (1985)CrossRefGoogle Scholar
  34. 34.
    Larché, F.C., Cahn, J.W.: Phase changes in a thin plate with non-local self-stress effects. Acta Metall. 40, 947–955 (1992)CrossRefGoogle Scholar
  35. 35.
    Leo, P.H., Lowengrub, J.S., Jou, H.J.: A diffuse interface model for microstructural evolution in elastically stressed solids. Acta Mater. 46, 2113–2130 (1998)CrossRefGoogle Scholar
  36. 36.
    Miranville, A.: Some generalizations of Cahn–Hilliard equation. Asymptot. Anal. 22, 235–259 (2000)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Miranville, A.: Long-time behavior of some models of Cahn–Hilliard equations in deformable continua. Nonlinear Anal. Real World Appl. 2, 273–304 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Miranville, A.: Consistent models of Cahn–Hilliard–Gurtin equations with Neumann boundary conditions. Physica D 158, 233–257 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Miranville, A.: Generalized Cahn–Hilliard equations based on a microforce balance. J. Appl. Math. 4, 165–185 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Moll, S., Shirakawa, K.: Existence of solutions to the Kobayashi–Warren–Carter system. Calc. Var. Partial Differ. Equ. 51, 621–656 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Moll, S., Shirakawa, K., Watanabe, H.: Energy dissipative solutions to the Kobayashi–Warren–Carter system. Nonlinearity 30, 2752–2784 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286–292 (1960)CrossRefzbMATHGoogle Scholar
  43. 43.
    Provatas, N., Elder, K.: Phase-Field Methods in Materials Science. Wiley, Weinheim (2010)CrossRefGoogle Scholar
  44. 44.
    Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1986)zbMATHGoogle Scholar
  45. 45.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60, 259–268 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Tartar, L.: Introduction to Sobolev Spaces and Interpolation Theory. Springer, Berlin (2007)zbMATHGoogle Scholar
  47. 47.
    Warren, J.A., Kobayashi, R., Carter, W.C.: Modeling grain boundaries using a phase field technique. J. Cryst. Growth 211, 18–20 (2000)CrossRefGoogle Scholar
  48. 48.
    Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Comput. Phys. 218, 860–877 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of AugsburgAugsburgGermany
  2. 2.Department of MathematicsUniversity of HoustonHoustonUSA

Personalised recommendations