Advertisement

Computing and Visualization in Science

, Volume 20, Issue 1–2, pp 29–46 | Cite as

Exploiting multilevel Toeplitz structures in high dimensional nonlocal diffusion

  • Christian VollmannEmail author
  • Volker Schulz
Original Article
  • 83 Downloads

Abstract

We present a finite element implementation for the steady-state nonlocal Dirichlet problem with homogeneous volume constraints. Here, the nonlocal diffusion operator is defined as integral operator characterized by a certain kernel function. We assume that the domain is an arbitrary d-dimensional hyperrectangle and the kernel is translation and reflection invariant. Under these assumptions, we carefully analyze the structure of the stiffness matrix resulting from a continuous Galerkin method with \(Q_1\) elements and exploit this structure in order to cope with the curse of dimensionality associated to nonlocal problems. For the purpose of illustration we choose a particular kernel, which is related to space-fractional diffusion and present numerical results in 1d, 2d and for the first time also in 3d.

Keywords

Nonlocal diffusion Finite element method Translation invariant kernel Multilevel Toeplitz Fractional diffusion 

Notes

Acknowledgements

The first author has been supported by the German Research Foundation (DFG) within the Research Training Group 2126: “Algorithmic Optimization”.

References

  1. 1.
    Acosta, G., Bersetche, F.M., Borthagaray, J.P.: A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. (2017).  https://doi.org/10.1016/j.camwa.2017.05.026. http://www.sciencedirect.com/science/article/pii/S0898122117303310
  2. 2.
    Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55(2), 472–495 (2017).  https://doi.org/10.1137/15M1033952 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bass, R.F., Kassmann, M., Kumagai, T.: Symmetric jump processes: localization, heat kernels and convergence. Ann. Inst. H. Poincaré Probab. Stat. 46(1), 59–71 (2010).  https://doi.org/10.1214/08-AIHP201 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Burkovska, O., Gunzburger, M.: Regularity and approximation analyses of nonlocal variational equality and inequality problems. arXiv preprint. arXiv:1804.10282 (2018)
  5. 5.
    Capizzano, S.S., Tyrtyshnikov, E.E.: Any circulant-like preconditioner for multilevel matrices is not superlinear. SIAM J. Matrix Anal. Appl. 21, 431–439 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chan, T.F.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Stat. Comput. 9(4), 766–771 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, J., Li, T.L., Anitescu, M.: A parallel linear solver for multilevel Toeplitz systems with possibly several right-hand sides. Parallel Comput. 40(8), 408–424 (2014).  https://doi.org/10.1016/j.parco.2014.06.004. http://www.sciencedirect.com/science/article/pii/S0167819114000672
  8. 8.
    Chen, M., Deng, W.: Convergence proof for the multigrid method of the nonlocal model. arXiv preprint. arXiv:1605.05481 (2016)
  9. 9.
    Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54(4), 667–696 (2012).  https://doi.org/10.1137/110833294 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci. 23(03), 493–540 (2013).  https://doi.org/10.1142/S0218202512500546 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Du, Q., Zhou, K.: Mathematical analysis for the peridynamic nonlocal continuum theory. ESAIM: M2AN 45(2), 217–234 (2011).  https://doi.org/10.1051/m2an/2010040
  12. 12.
    D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66(7), 1245–1260 (2013).  https://doi.org/10.1016/j.camwa.2013.07.022. http://www.sciencedirect.com/science/article/pii/S0898122113004707
  13. 13.
    Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2009).  https://doi.org/10.1137/070698592 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Elman, Howard, Silvester, David, Wathen, Andy: Finite Elements and Fast Iterative Solvers. Oxford University Press, New York (2005)zbMATHGoogle Scholar
  15. 15.
    Barlow, Martin T., Bass, Richard F., Chen, Zhen-Qing, Krassmann, Moritz: Non-local Dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. 361(4), 1963–1999 (2009).  https://doi.org/10.1090/S0002-9947-08-04544-3 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nocedale, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999).  https://doi.org/10.1007/978-0-387-40065-5 CrossRefGoogle Scholar
  17. 17.
    Olshanskii, M.A., Tyrtyshnikov, E.E.: Iterative methods for linear systems: theory and applications. SIAM (2014)Google Scholar
  18. 18.
    Olshevsky, V., Oseledets, I., Tyrtyshnikov, E.: Tensor properties of multilevel Toeplitz and related matrices. Linear Algebra Appl. 412(1), 1–21 (2006).  https://doi.org/10.1016/j.laa.2005.03.040. http://www.sciencedirect.com/science/article/pii/S002437950500296X
  19. 19.
    Pang, H.K., Sun, H.W.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231(2), 693–703 (2012).  https://doi.org/10.1016/j.jcp.2011.10.005. http://www.sciencedirect.com/science/article/pii/S0021999111005985
  20. 20.
    Peyré, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems, pp. 57–68. Springer Berlin Heidelberg, Berlin, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88690-7_5
  21. 21.
    Rosasco, L., Belkin, M., Vito, E.D.: On learning with integral operators. J. Mach. Learn. Res. 11, 905–934 (2010). http://dl.acm.org/citation.cfm?id=1756006.1756036
  22. 22.
    Serra-Capizzano, S.: Toeplitz matrices: spectral properties and preconditioning in the cg method (2007)Google Scholar
  23. 23.
    Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34(5), A2444–A2458 (2012).  https://doi.org/10.1137/12086491X MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, H., Du, N.: A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation. J. Comput. Phys. 253, 50–63 (2013).  https://doi.org/10.1016/j.jcp.2013.06.040. http://www.sciencedirect.com/science/article/pii/S0021999113004701
  25. 25.
    Wang, H., Wang, K., Sircar, T.: A direct o(nlog2n) finite difference method for fractional diffusion equations. J. Comput. Phys. 229(21), 8095–8104 (2010).  https://doi.org/10.1016/j.jcp.2010.07.011. http://www.sciencedirect.com/science/article/pii/S0021999110003943
  26. 26.
    Ye, K., Lim, L.H.: Algorithms for structured matrix-vector product of optimal bilinear complexity. In: 2016 IEEE Information Theory Workshop (ITW), pp. 310–314 (2016).  https://doi.org/10.1109/ITW.2016.7606846
  27. 27.
    Zhou, K., Du, Q.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48(5), 1759–1780 (2010).  https://doi.org/10.1137/090781267 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universitaet TrierTrierGermany

Personalised recommendations