Advertisement

Computing and Visualization in Science

, Volume 18, Issue 4–5, pp 145–155 | Cite as

Error analysis in determining the centroids of circular objects in images

  • Sagar AdatraoEmail author
  • Mayank Mittal
Original Article
  • 136 Downloads

Abstract

Detecting the size and/or location of circular object(s) in an image(s) has application in many areas, like, flow diagnostics, biomedical engineering, computer vision, etc. The detection accuracy of circular object(s) largely depends on the accuracy of centroiding algorithm and image preprocessing technique. In the present work, an error analysis is performed in determining the centroids of circular objects using synthetic images with eight different signal-to-noise ratios ranging from 2.7 to 17.8. In the first stage, four different centroiding algorithms, namely, Center of Mass, Weighted Center of Mass, Späth algorithm, and Hough transform, are studied and compared. The error analysis shows that Späth algorithm performs better than other algorithms. In the second stage, various image preprocessing techniques, consisting of two filters, namely, Median and Wiener, and five image segmentation methods, namely, Sobel, Prewitt, Laplacian of Gaussian (LoG) edge detector, basic global thresholding, and Otsu’s global thresholding, are compared to determine the centroids of circular objects using Späth algorithm. It is found that Wiener filter plus LoG edge detector performs better than other preprocessing techniques. Real images of a calibration target (typical in flow diagnostics) and the secondary atomization of water droplets are then considered for centroids detection. These two images are preprocessed using Wiener filter plus LoG edge detector and then processed using Späth algorithm to detect the centroids of circular objects. It is observed that the results of real image of the calibration target and synthetic images are comparable. Also, based on visual inspection, the centroids detected in the real image of water droplets are found to be reasonably accurate.

Keywords

Centroiding algorithms Filtering Segmentation Image processing 

Notes

Acknowledgements

The authors would like to thank Dr. TNC Anand and Mr. Sumit Joshi of IIT Madras for providing an image of water droplets for centroids detection. Valuable comments from anonymous reviewers are also appreciated.

References

  1. 1.
    Adatrao, S., Mittal, M.: An analysis of different image preprocessing techniques for determining the centroids of circular marks using Hough transform. In: Proceedings of the IEEE 2nd International Conference on Frontiers of Signal Processing (ICFSP 2016), Warsaw, Poland, pp. 110–115 (2016). doi: 10.1109/ICFSP.2016.7802966
  2. 2.
    Basu, M.: Gaussian-based edge-detection methods—a survey. IEEE Trans. Syst. Man Cybern. Part C 32(3), 252–260 (2002). doi: 10.1109/TSMCC.2002.804448 CrossRefGoogle Scholar
  3. 3.
    Bredies, K., Wolinski, H.: An active-contour based algorithm for the automated segmentation of dense yeast populations on transmission microscopy images. Comput. Vis. Sci. 14, 341–352 (2011). doi: 10.1007/s00791-012-0178-8 CrossRefGoogle Scholar
  4. 4.
    Caso, M., Bohl, D.: Error reduction in molecular tagging velocimetry via image preprocessing. Exp. Fluids 55, 1802 (2014). doi: 10.1007/s00348-014-1802-9 CrossRefGoogle Scholar
  5. 5.
    Duda, R., Hart, P.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)CrossRefzbMATHGoogle Scholar
  6. 6.
    Fosu, C., Hein, G., Eissfeller, B.: Determination of centroid of CCD star images. University FAF Munich Germany, Commission III, WG III/8 (2004)Google Scholar
  7. 7.
    Gohane, R., Adatrao, S., Mittal, M.: Comparison of various centroiding algorithms to determine the centroids of circular marks in images. In: Proceedings of the IEEE International Conference on Computing, Analytics and Security Trends (CAST 2016), Pune, India (2016). doi: 10.1109/CAST.2016.7914959
  8. 8.
    Gonzalez, R., Woods, R., Eddins, S.: Basic Global Thresholding in Digital Image Processing Using MATLAB, 2nd edn, pp. 513–514. Tata McGraw Hill, New Delhi (2010)Google Scholar
  9. 9.
    Gonzalez, R., Woods, R.: Fidelity Criteria in Digital Image Processing, pp. 318–320. Pearson Education Inc., Singapore (2001)Google Scholar
  10. 10.
    He, Z., Sun, Z., Qiu, X.: Toward accurate and fast iris segmentation for iris biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1670–1684 (2009). doi: 10.1109/TPAMI.2008.183 CrossRefGoogle Scholar
  11. 11.
    Heikkilä, J.: Geometric camera calibration using circular control points. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1066–1077 (2000). doi: 10.1109/34.879788 CrossRefGoogle Scholar
  12. 12.
    Hough, P.: Method and means for recognizing complex patterns. Patent 3,069,654 (1962)Google Scholar
  13. 13.
    Jain, A.K.: Image Fidelity Criteria in Fundamentals of Digital Image Processing. Pearson Education Inc., Singapore (2009)Google Scholar
  14. 14.
    Joshi, S., Anand, T.N.C.: Studies on secondary atomization of non-Newtonian molten droplets. In: Proceedings of the 13th Triennial International Conference on Liquid Atomization and Spray Systems (ICLASS 2015), Tainan, Taiwan (2015)Google Scholar
  15. 15.
    Kannala, J., Brandt, S.S.: A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1335–1340 (2006). doi: 10.1109/TPAMI.2006.153 CrossRefGoogle Scholar
  16. 16.
    Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. Ser. B 207(1167), 187–217 (1980)CrossRefGoogle Scholar
  17. 17.
    Mittal, M., Sadr, R., Schock, H.J., Fedewa, A., Naqwi, A.: In-cylinder engine flow measurement using stereoscopic molecular tagging velocimetry (SMTV). Exp. Fluids 46(2), 277–284 (2009). doi: 10.1007/s00348-008-0557-6 CrossRefGoogle Scholar
  18. 18.
    Mittal, M., Schock, H.J., Ravi, V., Naguib, A.: Establishment of a database by conducting intake manifold and in-cylinder flow measurements in an internal combustion engine assembly. SAE Technical Paper 2013-01-0565. doi: 10.4271/2013-01-0565
  19. 19.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. SMC–9(1), 62–66 (1979). doi: 10.1109/TSMC.1979.4310076
  20. 20.
    Shahidi, R., Bax, M.R., Maurer, C.R., Johnson, J.A., Wilkinson, E.P., Wang, B., West, J.B., Citardi, M.J., Manwaring, K.H., Khadem, R.: Implementation, calibration, and accuracy testing of an image-enhanced endoscopy system. IEEE Trans. Med. Imaging 21(12), 1524–1535 (2002). doi: 10.1109/TMI.2002.806597 CrossRefGoogle Scholar
  21. 21.
    Soloff, S.M., Adrian, R.J., Liu, Z.C.: Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Technol. 8, 1441–1454 (1997)CrossRefGoogle Scholar
  22. 22.
    Späth, H.: Least-squares fitting by circles. Computing 57(2), 179–185 (1996). doi: 10.1007/BF02276879 CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Vedula, R., Mittal, M., Schock, H.J.: Molecular tagging velocimetry and its application to in-cylinder flow measurements. ASME J. Fluids Eng. 135(12), 121203 (17 pages) (2013). doi: 10.1115/1.4025170 CrossRefGoogle Scholar
  24. 24.
    Vyas, A., Roopashree, M.B., Prasad, B.R.: Performance of centroiding algorithms at low light level conditions in adaptive optics. In: Proceedings of the International Conference on Advances in Recent Technologies in Communication and Computing, 2009, pp. 366–369 (2009). doi: 10.1109/ARTCom.2009.30

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations