Advertisement

Computing and Visualization in Science

, Volume 17, Issue 2, pp 99–108 | Cite as

Numerical simulation of skin transport using Parareal

  • Andreas Kreienbuehl
  • Arne Naegel
  • Daniel Ruprecht
  • Robert Speck
  • Gabriel Wittum
  • Rolf Krause
Article

Abstract

In silico investigation of skin permeation is an important but also computationally demanding problem. To resolve all scales involved in full detail will not only require exascale computing capacities but also suitable parallel algorithms. This article investigates the applicability of the time-parallel Parareal algorithm to a brick and mortar setup, a precursory problem to skin permeation. The C++ library Lib4PrM implementing Parareal is combined with the UG4 simulation framework, which provides the spatial discretization and parallelization. The combination’s performance is studied with respect to convergence and speedup. It is confirmed that anisotropies in the domain and jumps in diffusion coefficients only have a minor impact on Parareal’s convergence. The influence of load imbalances in time due to differences in number of iterations required by the spatial solver as well as spatio-temporal weak scaling is discussed.

Keywords

Skin transport Parareal Space–time parallelism  Weak scaling Load balancing 

References

  1. 1.
    Anissimov, Y.G., Roberts, M.S.: Diffusion modeling of percutaneous absorption kinetics: 3. Variable diffusion and partition coefficients, consequences for stratum corneum depth profiles and desorption kinetics. J. Pharm. Sci. 93(2), 470–487 (2004). doi: 10.1002/jps.10567 CrossRefGoogle Scholar
  2. 2.
    Anissimov, Y.G., Roberts, M.S.: Diffusion modelling of percutaneous absorption kinetics: 4. Effects of slow equilibration process within stratum corneum on absorbtion and desorption kinetics. J. Pharm. Sci. 98, 772–781 (2009). doi: 10.1002/jps.21461 CrossRefGoogle Scholar
  3. 3.
    Arteaga, A., Ruprecht, D., Krause, R.: A stencil-based implementation of Parareal in the C\(++\) domain specific embedded language STELLA. Appl. Math. Comput. (2015). doi: 10.1016/j.amc.2014.12.055
  4. 4.
    Aubanel, E.: Scheduling of tasks in the Parareal algorithm. Parallel Comput. 37, 172–182 (2011). doi: 10.1016/j.parco.2010.10.004 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bal, G.: On the convergence and the stability of the Parareal algorithm to solve partial differential equations. In: Kornhuber, R., et al. (eds.) Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computational Science and Engineering, vol. 40, pp. 426–432. Springer, Berlin (2005). doi: 10.1007/3-540-26825-1_43 Google Scholar
  6. 6.
    Bylaska, E.J., Weare, J.Q., Weare, J.H.: Extending molecular simulation time scales: parallel in time integrations for high-level quantum chemistry and complex force representations. J. Chem. Phys. 139(7), 074114 (2013). doi: 10.1063/1.4818328 CrossRefGoogle Scholar
  7. 7.
    Celledoni, E., Kvamsdal, T.: Parallelization in time for thermo-viscoplastic problems in extrusion of aluminium. Int. J. Numer. Methods Eng. 79(5), 576–598 (2009). doi: 10.1002/nme.2585 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20(3), 720–755 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dick, B., Vogel, A., Khabi, D., Rupp, M., Küster, U., Wittum, G.: Utilization of empirically determined energy-optimal CPU-frequencies in a numerical simulation code. Comput. Vis. Sci. (2015). doi: 10.1007/s00791-015-0249-8
  10. 10.
    Dongarra, J., et al.: Applied Mathematics Research for Exascale Computing. Technical Report LLNL-TR-651000, Lawrence Livermore National Laboratory (2014). http://science.energy.gov/~/media/ascr/pdf/research/am/docs/EMWGreport.pdf
  11. 11.
    Elwasif, W.R., Foley, S.S., Bernholdt, D.E., Berry, L.A., Samaddar, D., Newman, D.E., Snchez, R.S.: A dependency-driven formulation of parareal: parallel-in-time solution of PDEs as a many-task application. In: Proceedings of the 2011 ACM International Workshop on Many Task Computing on Grids and Supercomputers, p. 1524 (2011). doi: 10.1145/2132876.2132883
  12. 12.
    Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7, 105132 (2012). doi: 10.2140/camcos.2012.7.105 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Falgout, R.D., Friedhoff, S., Kolev, T.V., MacLachlan, S.P., Schroder, J.B.: Parallel time integration with multigrid. SIAM J. Sci. Comput. 36, C635C661 (2014)Google Scholar
  14. 14.
    Farhat, C., Chandesris, M.: Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications. Int. J. Numer. Methods Eng. 58(9), 13971434 (2003). doi: 10.1002/nme.860 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gander, M.J., Vandewalle, S.: On the superlinear and linear convergence of the Parareal algorithm. In: Widlund, O.B., Keyes, D.E. (eds.) Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computational Science and Engineering, vol. 55, pp. 291–298. Springer, Berlin (2007). doi: 10.1007/978-3-540-34469-8_34
  16. 16.
    Hansen, S., Lehr, C.M., Schaefer, U.F.: Modeling the human skin barrier—towards a better understanding of dermal absorption. Adv. Drug Deliv. Rev. (2013). doi: 10.1016/j.addr.2012.12.002
  17. 17.
    Kreienbuehl, A., Benedusi, P., Ruprecht, D., Krause, R.: Time parallel gravitational collapse simulation (2015) (in preparation)Google Scholar
  18. 18.
    Li, X., Demmel, J., Gilbert, J., iL. Grigori, Shao, M., Yamazaki, I.: SuperLU Users’ Guide. Technical Report LBNL-44289, Lawrence Berkeley National Laboratory (1999). http://crd.lbl.gov/~xiaoye/SuperLU/. Last update: August 2011
  19. 19.
    Lions, J.L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. C. R. l’Acad. Sci. Ser. I Math. 332, 661668 (2001). doi: 10.1016/S0764-4442(00)01793-6 MathSciNetGoogle Scholar
  20. 20.
    Minion, M.L., Speck, R., Bolten, M., Emmett, M., Ruprecht, D.: Interweaving PFASST and parallel multigrid. SIAM J. Sci. Comput. (2015). arxiv:1407.6486
  21. 21.
    Minion, M.L.: A hybrid Parareal spectral deferred corrections method. Commun. Appl. Math. Comput. Sci. 5(2), 265301 (2010). doi: 10.2140/camcos.2010.5.265 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mula, O.: Some contributions towards the parallel simulation of time dependent neutron transport and the integration of observed data in real time. Ph.D. Thesis, Université Pierre et Marie Curie - Paris VI (2014). https://tel.archives-ouvertes.fr/tel-01081601
  23. 23.
    Naegel, A., Heisig, M., Wittum, G.: A comparison of two- and three-dimensional models for the simulation of the permeability of human stratum corneum. Eur. J. Pharm. Biopharm. 72(2), 332–338 (2009). doi: 10.1016/j.ejpb.2008.11.009. http://www.sciencedirect.com/science/article/B6T6C-4V1KMMP-1/2/b906a3a90140385ba35b48bed48fdef7
  24. 24.
    Querleux, B. (ed.): Computational Biophysics of the Skin. Pan Stanford Publishing, Singapore (2014)Google Scholar
  25. 25.
    Randles, A., Kaxiras, E.: Parallel in time approximation of the lattice Boltzmann method for laminar flows. J. Comput. Phys. 270, 577586 (2014). doi: 10.1016/j.jcp.2014.04.006 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Reiter, S., Vogel, A., Heppner, I., Rupp, M., Wittum, G.: A massively parallel geometric multigrid solver on hierarchically distributed grids. Comput. Vis. Sci. 16(4), 151–164 (2013). doi: 10.1007/s00791-014-0231-x CrossRefGoogle Scholar
  27. 27.
    Rim, J.E., Pinsky, P.M., van Osdol, W.W.: Using the method of homogenization to calculate the effective diffusivity of the stratum corneum with permeable corneocytes. J. Biomech. 41(4), 788–796 (2008). doi: 10.1016/j.jbiomech.2007.11.011. http://www.sciencedirect.com/science/article/B6T82-4RWHXFR-2/2/bfe8e93f74d145a105071a106d6d227c
  28. 28.
    Rim, J.E., Pinsky, P.M., van Osdol, W.W.: Multiscale modeling framework of transdermal drug delivery. Ann. Biomed. Eng. 37(6), 1217–1229 (2009)CrossRefGoogle Scholar
  29. 29.
    Ruprecht, D., Speck, R., Emmett, M., Bolten, M., Krause, R.: Poster: Extreme-scale space–time parallelism. In: Proceedings of the 2013 Conference on High Performance Computing Networking, Storage and Analysis Companion, SC’13 Companion (2013). http://sc13.supercomputing.org/sites/default/files/PostersArchive/tech_posters/post148s2-file3.pdf
  30. 30.
    Ruprecht, D., Speck, R., Krause, R.: Parareal for diffusion problems with space- and time-dependent coefficients. In: Domain Decomposition Methods in Science and Engineering XXII, Lecture Notes in Computational Science and Engineering, vol. 104, pp. 3–10. Springer, Switzerland (2015). doi: 10.1007/978-3-319-18827-0_1
  31. 31.
    Ruprecht, D.: Convergence of Parareal with spatial coarsening. PAMM 14(1), 1031–1034 (2014). doi: 10.1002/pamm.201410490 CrossRefGoogle Scholar
  32. 32.
    Samaddar, D., Newman, D.E., Snchez, R.S.: Parallelization in time of numerical simulations of fully-developed plasma turbulence using the Parareal algorithm. J. Comput. Phys. 229, 65586573 (2010). doi: 10.1016/j.jcp.2010.05.012 CrossRefGoogle Scholar
  33. 33.
    Speck, R., Ruprecht, D., Krause, R., Emmett, M., Minion, M.L., Winkel, M., Gibbon, P.: A massively space–time parallel N-body solver. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC’12, p. 92:1–92:11. IEEE Computer Society Press, Los Alamitos, CA, USA (2012). doi: 10.1109/SC.2012.6
  34. 34.
    Vogel, A., Calotoiu, A., Strube, A., Reiter, S., Nägel, A., Wolf, F., Wittum, G.: 10,000 performance models per minute-scalability of the UG4 simulation framework. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015: parallel processing, pp. 519–531. Springer, Berlin (2015)Google Scholar
  35. 35.
    Vogel, A., Reiter, S., Rupp, M., Nägel, A., Wittum, G.: UG4: A novel flexible software system for simulating pde based models on high performance computers. Comput. Vis. Sci. 16(4), 165–179 (2013). doi: 10.1007/s00791-014-0232-9 CrossRefGoogle Scholar
  36. 36.
    Wang, T.F., Kasting, G.B., Nitsche, J.M.: A multiphase microscopic diffusion model for stratum corneum permeability. I. Formulation, solution, and illustrative results for representative compounds. J. Pharm. Sci. 95(3), 620–648 (2006). doi: 10.1002/jps.20509 CrossRefGoogle Scholar
  37. 37.
    Wang, T.F., Kasting, G.B., Nitsche, J.M.: A multiphase microscopic diffusion model for stratum corneum permeability. II. Estimation of physicochemical parameters, and application to a large permeability database. J. Pharm. Sci. 96(11), 3024–3051 (2007). doi: 10.1002/jps.20883 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andreas Kreienbuehl
    • 1
  • Arne Naegel
    • 2
  • Daniel Ruprecht
    • 1
  • Robert Speck
    • 3
  • Gabriel Wittum
    • 2
  • Rolf Krause
    • 1
  1. 1.Institute of Computational Science, Faculty of InformaticsUniversità della Svizzera italianaLuganoSwitzerland
  2. 2.Goethe-Center for Scientific ComputingGoethe-University FrankfurtFrankfurt a.MGermany
  3. 3.Jülich Supercomputing Centre, Institute for Advanced SimulationForschungszentrum Jülich GmbHJülichGermany

Personalised recommendations