\(\mathrm{ND}^2\mathrm{AV}\): N-dimensional data analysis and visualization analysis for the National Ignition Campaign

  • 178 Accesses

  • 2 Citations


One of the biggest challenges in high-energy physics is to analyze a complex mix of experimental and simulation data to gain new insights into the underlying physics. Currently, this analysis relies primarily on the intuition of trained experts often using nothing more sophisticated than default scatter plots. Many advanced analysis techniques are not easily accessible to scientists and not flexible enough to explore the potentially interesting hypotheses in an intuitive manner. Furthermore, results from individual techniques are often difficult to integrate, leading to a confusing patchwork of analysis snippets too cumbersome for data exploration. This paper presents a case study on how a combination of techniques from statistics, machine learning, topology, and visualization can have a significant impact in the field of inertial confinement fusion. We present the \(\mathrm{ND}^2\mathrm{AV}\): N-dimensional data analysis and visualization framework, a user-friendly tool aimed at exploiting the intuition and current workflow of the target users. The system integrates traditional analysis approaches such as dimension reduction and clustering with state-of-the-art techniques such as neighborhood graphs and topological analysis, and custom capabilities such as defining combined metrics on the fly. All components are linked into an interactive environment that enables an intuitive exploration of a wide variety of hypotheses while relating the results to concepts familiar to the users, such as scatter plots. \(\mathrm{ND}^2\mathrm{AV}\) uses a modular design providing easy extensibility and customization for different applications. \(\mathrm{ND}^2\mathrm{AV}\) is being actively used in the National Ignition Campaign and has already led to a number of unexpected discoveries.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Berger, W., Piringer, H., Filzmoser, P., Gröller, E.: Uncertainty-aware exploration of continuous parameter spaces using multivariate prediction. Comput. Graph. Forum 30(3), 911–920 (2011)

  2. 2.

    Bergner, S., Sedlmair, M., Nabi, S., Saad, A., Möller, T.: Paraglide: interactive parameter space partitioning for computer simulations. IEEE Trans. Vis. Comput. Graph. 19(9), 1499–1512 (2013)

  3. 3.

    Bertini, E., Tatu, A., Keim, D.: Quality metrics in high-dimensional data visualization: an overview and systematization. IEEE Trans. Vis. Comput. Graph. 17(12), 2203–2212 (2011)

  4. 4.

    Booshehrian, M., Möller, T., Peterman, R.M., Munzner, T.: Vismon: facilitating analysis of trade-offs, uncertainty, and sensitivity in fisheries management decision making. Comput. Graph. Forum 31, 1235–1244 (2012)

  5. 5.

    Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-oriented software architecture. Wiley, New York (1996)

  6. 6.

    Chazal, F., Guibas, L.J., Oudot, S.Y., Skraba, P.: Persistence-based clustering in riemannian manifolds. In: Proceedings 27th annual ACM symposium on computational geometry pp. 97–106 (2011)

  7. 7.

    Cook, D., Swayne, D.F.: Interactive and dynamic graphics for data analysis: with examples using R and GGobi. Springer, New York (2007)

  8. 8.

    Correa, C., Bremer, P.T., Lindstrom, P.: Topological spines: a structure-preserving visual representation of scalar fields. IEEE Trans. Vis. Comput. Graph. 17(12), 1842–1851 (2011)

  9. 9.

    Correa, C.D., Lindstrom, P.: Towards robust topology of sparsely sampled data. IEEE Trans. Vis. Comput. Graph. 17(12), 1852–1861 (2011)

  10. 10.

    Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002)

  11. 11.

    Edelsbrunner, H., Harer, J., Zomorodian, A.J.: Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30, 87–107 (2003)

  12. 12.

    Gaffney, J.A., Clark, D., Sonnad, V., Libby, S.B.: Bayesian inference of inaccuracies in radiation transport physics from inertial confinement fusion experiments. High Energy Density Phys. 9(3), 457–461 (2013a)

  13. 13.

    Gaffney, J.A., Clark, D., Sonnad, V., Libby, S.B.: Development of a bayesian method for the analysis of inertial confinement fusion experiments on the nif. Nucl. Fusion 53(073), 032 (2013b)

  14. 14.

    Gerber, S., Bremer, P.T., Pascucci, V., Whitaker, R.: Visual exploration of high dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 16(6), 1271–1280 (2010)

  15. 15.

    Guo, D.: Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Inf. Vis. 2(4), 232–246 (2003)

  16. 16.

    Haan, S.W., Lindl, J.D., Callahan, D.A., Clark, D.S., Salmonson, J.D., Hammel, B.A., Atherton, L.J., Cook, R.C., Edwards, M.J., Glenzer, S., Hamza, A.V., Hatchett, S.P., Herrmann, M.C., Hinkel, D.E., Ho, D.D., Huang, H., Jones, O.S., Kline, J., Kyrala, G., Landen, O.L., MacGowan, B.J., Marinak, M.M., Meyerhofer, D.D., Milovich, J.L., Moreno, K.A., Moses, E.I., Munro, D.H., Nikroo, A., Olson, R.E., Peterson, K., Pollaine, S.M., Ralph, J.E., Robey, H.F., Spears, B.K., Springer, P.T., Suter, L.J., Thomas, C.A., Town, R.P., Vesey, R., Weber, S.V., Wilkens, H.L., Wilson, D.C.: Point design targets, specifications, and requirements for the 2010 ignition campaign on the national ignition facility. Phys. Plasmas 18(5), (2011). doi:10.1063/1.3592169

  17. 17.

    Ingram, S., Munzner, T., Irvine, V., Tory, M., Bergner, S., Möller, T.: Dimstiller: workflows for dimensional analysis and reduction. IEEE conference on visual analytics software and technologies, pp. 3–10 (2010)

  18. 18.

    Inselberg, A.: Parallel coordinates: visual multidimensional geometry and its applications. Springer, New York (2009)

  19. 19.

    Johansson, S., Johansson, J.: Interactive dimensionality reduction through user-defined combinations of quality metrics. IEEE Trans. Vis. Comput. Graph. 15(6), 993–1000 (2009)

  20. 20.

    Kidder, R.: Laser compression of matter: optical power and energy requirements. Nucl. Fusion 14(6), 797–804 (1974)

  21. 21.

    Li, J.X.: Visualization of high dimensional data with relational perspective map. Inf. Vis. 3(1), 49–59 (2004)

  22. 22.

    Lindl, J.: Inertial confinement fusion: the quest for ignition and energy gain using indirect drive. American Institute of Physics, College Park (1998)

  23. 23.

    Lindl, J., Atherton, L., Amednt, P., Batha, S., Bell, P., Berger, R., Betti, R., Bleuel, D., Boehly, T., Bradley, D., Braun, D., Callahan, D., Celliers, P., Cerjan, C., Clark, D., Collins, G., Cook, R., Dewald, E., Divol, L., Dixit, S., Dzenitis, E., Edwards, M., Fair, J., Fortner, R., Frenje, J., Glebov, V., Glenzer, S., Grim, G., Haan, S., Hamza, A., Hammel, B., Harding, D., Hatchett, S., Haynam, C., Herrmann, H., Herrmann, M., Hicks, D., Hinkel, D., Ho, D., Hoffman, N., Huang, H., Izumi, N., Jacoby, B., Jones, O., Kalantar, D., Kauffman, R., Kilkenny, J., Kirkwood, R., Kline, J., Knauer, J., Koch, J., Kozioziemski, B., Kyrala, G., Fortune, K.L., Landen, O., Larson, D., Lerche, R., Pape, S.L., London, R., MacGowan, B., MacKinnon, A., Malsbury, T., Mapoles, E., Marinak, M., McKenty, P., Meezan, N., Meyerhofer, D., Michel, P., Milovich, J., Moody, J., Moran, M., Moreno, K., Moses, E., Munro, D., Nikroo, A., Olson, R., Parham, T., Patterson, R., Peterson, K., Petrasso, R., Pollaine, S., Ralph, J., Regan, S., Robey, H., Rosen, M., Sacks, R., Salmonson, J., Sangster, T., Sepke, S., Schneider, D., Schneider, M., Shaw, M., Spears, B., Springer, P., Stoeckl, C., Suter, L., Thomas, C., Tommasini, R., Town, R., VanWonterghem, B., Vesey, R., Weber, S., Wegner, P., Widman, K., Widmayer, C., Wilke, M., Wilkens, H., Williams, E., Wilson, D., Young, B.: Progress towards ignition on the national ignition facility. Nucl. Fusion 51(9), 94024–94031 (2011)

  24. 24.

    Maljovec, D., Wang, B., Pascucci, V., Bremer, P.T., Pernice, M., Mandelli, D., Nourgaliev, R.: Exploration of high-dimensional scalar function for nuclear reactor safety analysis and visualization. In: Proceedings international conference on mathematics and computational methods applied to nuclear science & engineering, pp. 712–723 (2013)

  25. 25.

    Matkovic, K., Jelovic, M., Juric, J., Konyha, Z., Gracanin, D.: Interactive visual analysis end exploration of injection systems simulations. In: IEEE visualization, pp. 391–398 (2005)

  26. 26.

    Munzner, T.: A nested model for visualization design and validation. IEEE Trans. Vis. Comput. Graph. 15(6), 921–928 (2009)

  27. 27.

    Ng, A., Jordan, M., Weiss, Y.: Advances in neural information processing. On spectral clustering: analysis and an algorithm, pp. 849–856. MIT Press, Cambridge (2001)

  28. 28.

    Oliphant, T.E.: Guide to NumPy. Provo, UT. URL (2006)

  29. 29.

    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

  30. 30.

    Piringer, H., Berger, W., Krasser, J.: Hypermoval: interactive visual validation of regression models for real-time simulation. Comput. Graph. Forum 29(3), 983–992 (2010)

  31. 31.

    PySide.: Pyside. (2010)

  32. 32.

    Qt.: Qt project. (1995)

  33. 33.

    Development Core Team, R.: R: a language and environment for statistical computing. Austria, Vienna (2008)

  34. 34.

    Robey, H.F., Celliers, P.M., Kline, J.L., Mackinnon, A.J., Boehly, T.R., Landen, O.L., Eggert, J.H., Hicks, D., Le Pape, S., Farley, D.R., Bowers, M.W., Krauter, K.G., Munro, D.H., Jones, O.S., Milovich, J.L., Clark, D., Spears, B.K., Town, R.P.J., Haan, S.W., Dixit, S., Schneider, M.B., Dewald, E.L., Widmann, K., Moody, J.D., Döppner, T.D., Radousky, H.B., Nikroo, A., Kroll, J.J., Hamza, A.V., Horner, J.B., Bhandarkar, S.D., Dzenitis, E., Alger, E., Giraldez, E., Castro, C., Moreno, K., Haynam, C., LaFortune, K.N., Widmayer, C., Shaw, M., Jancaitis, K., Parham, T., Holunga, D.M., Walters, C.F., Haid, B., Malsbury, T., Trummer, D., Coffee, K.R., Burr, B., Berzins, L.V., Choate, C., Brereton, S.J., Azevedo, S., Chandrasekaran, H., Glenzer, S., Caggiano, J.A., Knauer, J.P., Frenje, J.A., Casey, D.T., Gatu Johnson, M., Séguin, F.H., Young, B.K., Edwards, M.J., Van Wonterghem, B.M., Kilkenny, J., MacGowan, B.J., Atherton, J., Lindl, J.D., Meyerhofer, D.D., Moses, E.: (2012) Precision shock tuning on the national ignition facility. Phys. Rev. Lett. 108

  35. 35.

    van Rossum, G.: Python tutorial. In: Technical report CS-R9526, Centrum voor Wiskunde en Informatica (CWI) (1995)

  36. 36.

    Seo, J., Shneiderman, B.: A rank-by-feature framework for interactive exploration of multidimensional data. Inf. Vis. 4(2), 99–113 (2005)

  37. 37.

    Singh, G., Mémoli, F., Carlsson, G.: Topological methods for the analysis of high dimensional data sets and 3D object recognition. In: Eurographics symposium on point-based graphics, pp. 91–100 (2007)

  38. 38.

    Spears, B., Brandon, S., Clark, D., Cerjan, C., Edwards, J., Landen, O., Lindl, J., Haan, S., Hatchett, S., Salmonson, J., Springer, P., Weber, S., Wilson, D.: The experimental plan for cryogenic layered target implosions on the National Ignition Facility—the inertial confinement approach to fusion. Phys. Plasmas 18(5), (2011). doi:10.1063/1.3592173

  39. 39.

    Spears, B.K., Glenzer, S., Edwards, M.J., Brandon, S., Clark, D., Town, R., Cerjan, C., Dylla-Spears, R., Mapoles, E., Munro, D., Salmonson, J., Sepke, S., Weber, S., Hatchett, S., Haan, S., Springer, P., Moses, E., Kline, J., Kyrala, G., Wilson, D.: Performance metrics for inertial confinement fusion implosions: aspects of the technical framework for measuring progress in the national ignition campaign. Phys. Plasmas 19(5), (2012). doi:10.1063/1.3696743

  40. 40.

    Sutherland, P., Rossini, A., Lumley, T., Lewin-Koh, N., Dickerson, J., Cox, Z., Cook, D.: Orca: a visualization toolkit for high-dimensional data. J. Comput. Graph. Stat. 9(3), 509–529 (2000)

  41. 41.

    Tang, B.: Orthogonal array-based latin hypercubes. J. Am. Stat. Assoc. 88(424), 1392–1397 (1993)

  42. 42.

    Tatu, A., Albuquerque, G., Eisemann, M., Schneidewind, J., Theisel, H., Magnor, M., Keim, D.: Combining automated analysis and visualization techniques for effective exploration of high-dimensional data. In: IEEE symposium on visual analytics science and technology, pp. 59–66 (2009)

  43. 43.

    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

  44. 44.

    Theus, M., Urbanek, S.: Interactive graphics for data analysis: principles and examples (computer science and data analysis). Chapman & Hall/CRC, Boca Raton (2008)

  45. 45.

    Torsney-Weir, T., Saad, A., Moller, T., Hege, H.C., Weber, B., Verbavatz, J.M.: Tuner: principled parameter finding for image segmentation algorithms using visual response surface exploration. IEEE Trans. Vis. Comput. Graph. 17(12), 1892–1901 (2011)

  46. 46.

    VisuMap Technologies Inc: VisuMap—a high dimensional data visualizer (visumap white paper). Calgary, Alberta (2009)

  47. 47.

    Ward, M.O.: Xmdvtool: integrating multiple methods for visualizing multivariate data. In: Proceedings IEEE conference on visualization, pp. 326–333 (1994)

  48. 48.

    Waser, J., Fuchs, R., Ribicic, H., Schindler, B., Bloschl, G., Groller, M.: World lines. IEEE Trans. Visual. Comput. Graph. 16(6), 1458–1467 (2010)

  49. 49.

    van Wijk, J.J., van Liere, R.: Hyperslice: visualization of scalar functions of many variables. In: Proceedings IEEE conference on Visualization, pp. 119–125 (1993)

Download references


This work is performed in part under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344, LLNL-CONF-658933, LLNL-JRNL-630732. This work is also supported in part by the NSF, DOE, NNSA, SDAV SciDAC Institute and PISTON, award numbers NSF 0904631, DE-EE0004449, DE-NA0002375, DE-SC0007446, DE-SC0010498, NSG IIS-1045032, NSF EFT ACI-0906379, DOE/NEUP 120341, DOE/Codesign P01180734.

Author information

Correspondence to Peer-Timo Bremer.

Additional information

Communicated by Gabriel Wittum.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mov 82413 KB)

Supplementary material 1 (mov 82413 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bremer, P., Maljovec, D., Saha, A. et al. \(\mathrm{ND}^2\mathrm{AV}\): N-dimensional data analysis and visualization analysis for the National Ignition Campaign. Comput. Visual Sci. 17, 1–18 (2015) doi:10.1007/s00791-015-0241-3

Download citation


  • Topological analysis
  • Visualization
  • Dimension reduction