Skip to main content

Advertisement

Log in

Towards an efficient numerical simulation of complex 3D knee joint motion

  • Published:
Computing and Visualization in Science

Abstract

We present a time-dependent finite element model of the human knee joint of full 3D geometric complexity together with advanced numerical algorithms needed for its simulation. The model comprises bones, cartilage and the major ligaments, while patella and menisci are still missing. Bones are modeled by linear elastic materials, cartilage by linear viscoelastic materials, and ligaments by one-dimensional nonlinear Cosserat rods. In order to capture the dynamical contact problems correctly, we solve the full PDEs of elasticity with strict contact inequalities. The spatio-temporal discretization follows a time layers approach (first time, then space discretization). For the time discretization of the elastic and viscoelastic parts we use a new contact-stabilized Newmark method, while for the Cosserat rods we choose an energy-momentum method. For the space discretization, we use linear finite elements for the elastic and viscoelastic parts and novel geodesic finite elements for the Cosserat rods. The coupled system is solved by a Dirichlet–Neumann method. The large algebraic systems of the bone–cartilage contact problems are solved efficiently by the truncated non-smooth Newton multigrid method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://www.netlib.org/ode/ddassl.f.

  2. An adaptive time step control for the contact-stabilized Newmark method has been presented in [23, 26].

  3. http://www.amira.com.

  4. http://www.dune-project.org.

References

  1. Abdel-Rahman, E., Hefzy, M.S.: A two-dimensional dynamic anatomical model of the human knee joint. J. Biomech. Eng. 115, 357–365 (1993)

    Article  Google Scholar 

  2. Ahn, J., Stewart, D.E.: Dynamic frictionless contact in linear viscoelasticity. IMA J. Numer. Anal. 29(1), 43–71 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Antman, S.S.: Nonlinear Problems Of Elasticity, Volume 107 of Applied Mathematical Sciences. Springer, Berlin (1991)

    Google Scholar 

  4. Arbenz, P., van Lenthe, G.H., Mennel, U., Müller, R., Sala, M.: A scalable multi-level preconditioner for matrix-free \(\mu \)-finite element analysis of human bone structures. Int. J. Numer. Meth. Eng. 73(7), 927–947 (2008)

  5. Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuß, N., Rentz-Reichert, H., Wieners, C.: UG—a flexible software toolbox for solving partial differential equations. Comp. Vis. Sci. 1, 27–40 (1997)

    Article  MATH  Google Scholar 

  6. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic interface for adaptive and parallel scientific computing. Part II: implementation and tests in DUNE. Computing 82(2–3), 121–138 (2008)

  7. Bastian, P., Buse, G., Sander, O.: Infrastructure for the coupling of Dune grids. In: Proceedings of the ENUMATH 2009, pp. 107–114. Springer, Berlin (2010)

  8. Bei, Y., Fregly, B.J.: Multibody dynamic simulation of knee contact mechanics. Med. Eng. Phys. 26(9), 777–789 (2004)

    Article  Google Scholar 

  9. Blankevoort, L., Huiskes, H.: Ligament-bone interaction in a three-dimensional model of the knee. J. Biomech. Eng. 113(3), 263–269 (1991)

    Article  Google Scholar 

  10. Currey, J.D.: Bones: Structure and Mechanics. Princeton University Press, Princeton (2002)

    Google Scholar 

  11. Deuflhard, P., Krause, R., Ertel, S.: A contact-stabilized Newmark method for dynamical contact problems. Int. J. Numer. Methods Eng. 73(9), 1274–1290 (2007)

    Article  MathSciNet  Google Scholar 

  12. Deuflhard, P., Weiser, M.: Adaptive Numerical Solution of PDEs. de Gruyter, Berlin (2012)

    Book  MATH  Google Scholar 

  13. Donahue, T.H., Hull, M.L., Rashid, M.M., Jacobs, C.R.: A finite element model of the human knee joint for the study of tibio-femoral contact. J. Biomech. Eng. 124(3), 273–280 (2002)

    Article  Google Scholar 

  14. Eck, C.: Existenz und Regularität der Lösungen für Kontaktprobleme mit Reibung. PhD thesis, Universität Stuttgart (1996)

  15. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. SIAM, Philadelphia (1987)

    Google Scholar 

  16. Gräser, C., Kornhuber, R.: Multigrid methods for obstacle problems. J. Comp. Math. 27(1), 1–44 (2009)

    MATH  Google Scholar 

  17. Gräser, C., Sack, U., Sander, O.: Truncated nonsmooth Newton multigrid methods for convex minimization problems. In: Proceedings of the DD18, pp. 129–136 (2009)

  18. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  19. Heller, M., König, C., Graichen, H., Hinterwimmer, S., Ehrig, R., Duda, G., Taylor, W.: A new model to predict in vivo human knee kinematics under physiological-like muscel activation. J. Biomech. 40, 45–53 (2007)

    Article  Google Scholar 

  20. Huang, C., Mow, V., Ateshian, G.: The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J. Biomech. Eng. 123(5), 410–7 (2001)

    Article  Google Scholar 

  21. Kehrbaum, S.: Hamiltonian Formulations of the Equilibrium Conditions Governing Elastic Rods: Qualitative Analysis and Effective Properties. PhD thesis, University of Maryland (1997)

  22. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity. SIAM, Philadelphia (1988)

    Book  MATH  Google Scholar 

  23. Klapproth, C.: Adaptive numerical integration for dynamical contact problems. PhD thesis, Freie Universität Berlin (2011); also published at Cuvillier Verl. Göttingen

  24. Klapproth, C., Deuflhard, P., Schiela, A.: A perturbation result for dynamical contact problems. Numer. Math. Theor. Meth. Appl. 2(3), 237–257 (2009)

    MATH  MathSciNet  Google Scholar 

  25. Klapproth, C., Schiela, A., Deuflhard, P.: Consistency results on Newmark methods for dynamical contact problems. Numer. Math. 116(1), 65–94 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Klapproth, C., Schiela, A., Deuflhard, P.: Adaptive timestep control for the contact-stabilized Newmark method. Numer. Math. 119(1), 49–81 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kornhuber, R., Krause, R.: Adaptive multigrid methods for Signorini’s problem in linear elasticity. Comp. Vis. Sci. 4(1), 9–20 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kornhuber, R., Krause, R., Sander, O., Deuflhard, P., Ertel, S.: A monotone multigrid solver for two body contact problems in biomechanics. Comp. Vis. Sci. 11(1), 3–15 (2008)

    Article  MathSciNet  Google Scholar 

  29. Kornhuber, R.: Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems. B.G Teubner, Stuttgart (1997)

  30. Krause, R., Sander, O.: Automatic construction of boundary parametrizations for geometric multigrid solvers. Comp. Vis. Sci. 9, 11–22 (2006)

    Article  MathSciNet  Google Scholar 

  31. Krause, R., Schittler, D., Reiter, M., Waldherr, S., Allgöwer, F., Karastoyanova, D., Leymann, F., Markert, B., Ehlers, W.: Bone remodelling: a combined biomechanical and systems-biological challenge. PAMM 11, 99–100 (2011)

    Article  Google Scholar 

  32. Lai, W., Hou, J., Mow, V.: A triphasic theory for the swelling and deformation behaviours of articular cartilage. J. Biomech. Eng. 113, 245–58 (1991)

    Article  Google Scholar 

  33. Laursen, T.A., Chawla, V.: Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Eng. 40(5), 863–886 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. Laursen, T.A.: Computational Contact and Impact Mechanics. Springer, Berlin (2003)

    Book  Google Scholar 

  35. Machado, M., Flores, P., Claro, J., Ambrósio, J., Silva, M., Completo, A., Lankarani, H.: Development of a planar multibody model of the human knee joint. Nonlinear Dyn. 60, 459–478 (2010)

    Article  MATH  Google Scholar 

  36. McLean, S.G., Su, A., van den Bogert, A.J.: Development and validation of a 3-D model to predict knee joint loading during dynamic movement. J. Biomech. Eng. 125, 864–875 (2003)

    Article  Google Scholar 

  37. Nackenhorst, U.: Computational methods for studies on the biomechanics of bones. Found. Civil Environ. Eng. 11, 99–100 (2006)

    Google Scholar 

  38. Penrose, M.T., Holt, G.M., Beaugonin, M., Hose, D.R.: Development of an accurate three-dimensional finite element knee model. Comp. Meth. Biomech. Biomed. Eng. 5(4), 291–300 (2002)

    Article  Google Scholar 

  39. Piazza, S.J., Delp, S.L.: Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. J. Biomech. Eng. 123, 599–607 (2001)

    Article  Google Scholar 

  40. Putz, R., Pabst, R., ed.: Sobotta—Atlas der Anatomie des Menschen. Urban & Fischer (2000)

  41. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications, Oxford (1999)

    MATH  Google Scholar 

  42. Sander, O.: Multidimensional Coupling in a Human Knee Model. PhD thesis, Freie Universität Berlin (2008)

  43. Sander, O., Schiela, A.: Energy Minimizers of the Coupling of a Cosserat Rod to an Elastic Continuum. Technical Report 903, Matheon (2012); submitted

  44. Sander, O.: Geodesic finite elements for Cosserat rods. Int. J. Numer. Methods Eng. 82(13), 1645–1670 (2010)

    MATH  MathSciNet  Google Scholar 

  45. Sander, O.: The Psurface Library. Technical Report 708, Matheon (2010); to appear in CVS

  46. Sander, O.: Coupling Geometrically Exact Cosserat Rods and Linear Elastic Continua. Technical Report 772, Matheon (2011); to appear in Proc. DD20

  47. Schechter, E.: Handbook of Analysis and its Foundations. Academic Press, San Diego (1997)

    MATH  Google Scholar 

  48. Simo, J.C., Tarnow, N.: The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. J. Appl. Math. Phys. 43, 757–792 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  49. Simo, J.C., Tarnow, N., Doblaré, M.: Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms. Int. J. Numer. Methods Eng. 38, 1431–1473 (1995)

    Article  MATH  Google Scholar 

  50. Suh, J., Spilker, R.: Indentation analysis of biphasic articular cartilage: nonlinear phenomena under finite deformation. J. Biomech. Eng. 116(1), 1–9 (1994)

    Article  Google Scholar 

  51. The Visible Human Project. http://www.nlm.nih.gov/research/visible/visible_human.html

  52. van Eijden, T.M., Kouwenhoven, E., Verburg, J., Weijs, W.A.: A mathematical model of the patellofemoral joint. J. Biomech. 19, 219–229 (1986)

    Article  Google Scholar 

  53. Weiss, J., Gardiner, J.C.: Computational modelling of ligament mechanics. Crit. Rev. Biomed. Eng. 29(4), 1–70 (2001)

    Google Scholar 

  54. Wilson, W., van Donkelaar, C., van Rietbergen, R., Huiskes, R.: The role of computational models in the search for the mechanical behaviour and damage mechanisms of articular cartilage. Med. Eng. Phys. 27, 810–826 (2005)

    Article  Google Scholar 

  55. Wilson, W., van Donkelaar, C., van Rietbergen, R., Ito, K., Huiskes, R.: Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J. Biomech. Eng. 37(3), 357–66 (2004)

    Article  Google Scholar 

  56. Wohlmuth, B.: Discretization Methods and Iterative Solvers based on Domain Decomposition. LNCSE, vol. 17. Springer, Berlin (2001)

    Book  Google Scholar 

  57. Wohlmuth, B.: Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numerica 20, 569–734 (2011)

  58. Wohlmuth, B., Krause, R.: Monotone methods on nonmatching grids for nonlinear contact problems. SIAM J. Sci. Comput. 25(1), 324–347 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  59. Yao, J., Salo, A.D., Lee, J., Lerner, A.L.: Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics. J. Biomech. Eng. 41(2), 390–398 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Sander.

Additional information

Communicated by: Gabriel Wittum.

This work has been funded in part by the DFG research center Matheon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sander, O., Klapproth, C., Youett, J. et al. Towards an efficient numerical simulation of complex 3D knee joint motion. Comput. Visual Sci. 16, 119–138 (2013). https://doi.org/10.1007/s00791-014-0227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-014-0227-6

Keywords

Navigation