Computing and Visualization in Science

, Volume 16, Issue 1, pp 1–14 | Cite as

Parallel algebraic multilevel Schwarz preconditioners for a class of elliptic PDE systems

  • Alfio Borzì
  • Valentina De Simone
  • Daniela di Serafino
Article
  • 81 Downloads

Abstract

Algebraic multilevel preconditioners for algebraic problems arising from the discretization of a class of systems of coupled elliptic partial differential equations (PDEs) are presented. These preconditioners are based on modifications of Schwarz methods and of the smoothed aggregation technique, where the coarsening strategy and the restriction and prolongation operators are defined using a point-based approach with a primary matrix corresponding to a single PDE. The preconditioners are implemented in a parallel computing framework and are tested on two representative PDE systems. The results of the numerical experiments show the effectiveness and the scalability of the proposed methods. A convergence theory for the twolevel case is presented.

Keywords

Systems of elliptic PDEs Algebraic multilevel preconditioners Schwarz methods Smoothed aggregation Parallel computing 

Mathematics of Subject Classification

65F08 65N55 49J20 

References

  1. 1.
    Bastian, P., Hackbusch, W., Wittum, G.: Additive and multiplicative multigrid—a comparison. Computing 60, 345–364 (1998)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Borzì, A., Borzì, G.: An algebraic multigrid method for a class of elliptic differential systems. SIAM J. Sci. Comput. 25, 302–323 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brandt, A.: Multigrid techniques: 1984 guide with applications to fluid dynamics, vol. 85 of GMD-Studien, Gesellschaft für Mathematik und Datenverarbeitung mbH, St. Augustin (1984)Google Scholar
  4. 4.
    Brezina, M., Vaněk, P.: A black-box iterative solver based on a two-level Schwarz method. Computing 63, 233–263 (1999)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Brezina, M., Vaněk, P., Vassilevski, P.S.: An improved convergence analysis of smoothed aggregation algebraic multigrid. Numer. Linear Algebra Appl. 19, 441–469 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Buttari, A., D’Ambra, P., di Serafino, D., Filippone, S.: 2LEV-D2P4: a package of high-performance preconditioners for scientific and engineering applications. Appl. Algebra Eng. Commun. Comput. 18, 223–239 (2007)CrossRefMATHGoogle Scholar
  7. 7.
    Cai, X.-C., Saad, Y.: Overlapping domain decomposition algorithms for general sparse matrices. Numer. Linear Algebra Appl. 3, 221–237 (1996)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chan, T.F., Zou, J.: A convergence theory of multilevel additive Schwarz methods on unstructured meshes. Numer. Algorithms 13, 365–398 (1996)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    D’Ambra, P., di Serafino, D., Filippone, S.: On the development of PSBLAS-based parallel two-level Schwarz preconditioners. Appl. Numer. Math. 57, 1181–1196 (2007)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    D’Ambra, P., di Serafino, D., Filippone, S.: Performance analysis of parallel Schwarz preconditioners in the LES of turbulent channel flows. Comput. Math. Appl. 65, 352–361 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    D’Ambra, P., di Serafino, D., Filippone, S.: MLD2P4: a package of parallel algebraic multilevel domain decomposition preconditioners in Fortran 95. ACM Trans. Math. Software, 37, art. 30, 23 pages (2010)Google Scholar
  12. 12.
    Davis, T.A.: Algorithm 832: UMFPACK V4.3–an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 196–199 (2004)CrossRefMATHGoogle Scholar
  13. 13.
    Dongarra, J., Whaley, R.C.: A user’s guide to the BLACS v1.1, Lapack Working Note 94, Tech. Report UT-CS-95-281, University of Tennessee, March 1995 (updated May 1997)Google Scholar
  14. 14.
    Eisenstat, S., Elman, H., Schultz, M.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20, 345–357 (1983)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Falgout, R.D.: An introduction to algebraic multigrid. Computing in Science and Engineering 8, 24–33 (2006)CrossRefGoogle Scholar
  16. 16.
    Filippone, S., Buttari, A.: PSBLAS: User’s and Reference Guide, Available from http://www.ce.uniroma2.it/psblas/ (2008)
  17. 17.
    Filippone, S., Colajanni, M.: PSBLAS: a library for parallel linear algebra computation on sparse matrices. ACM Trans. Math. Softw. 26, 527–550 (2000)CrossRefGoogle Scholar
  18. 18.
    Füllenbach, T., Stüben, K.: Algebraic multigrid for selected PDE systems, in Elliptic and parabolic problems (Rolduc/Gaeta, 2001), pp. 399–410. World Scientific Publications, River Edge, NJ (2002)Google Scholar
  19. 19.
    Gee, M.W., Siefert, C.M., Hu, J.J., Tuminaro, R.S., Sala, M.G.: ML 5.0 smoothed aggregation user’s guide, Tech. Report SAND2006-2649, Sandia National Laboratories, Albuquerque, NM, and Livermore, CA, USA (2006)Google Scholar
  20. 20.
    Griebel, M., Oeltz, D., Schweitzer, M.A.: An algebraic multigrid method for linear elasticity. SIAM J. Sci. Comput. 25, 385–407 (2003)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos Project. ACM Trans. Math. Soft. 31, 397–423 (2005)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lahaye, D., De Gersen, H., Vandewalle, S., Hameyer, K.: Algebraic multigrid for complex symmetric systems. IEEE Trans. Magn. 36, 1535–1538 (2000)CrossRefGoogle Scholar
  23. 23.
    Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971)CrossRefMATHGoogle Scholar
  24. 24.
    Mandel, J., Brezina, M., Vaněk, P.: Energy optimization of algebraic multigrid bases. Computing 62, 205–228 (1999)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Rothe, F.: Global Solutions of Reaction–Diffusion Systems, vol. 1072 of Lecture Notes in Mathematics, Springer, Berlin (1984)Google Scholar
  26. 26.
    Ruge, J., Stüben, K.: Algebraic multigrid (AMG). In: McCormick, S.F. (ed.) Multigrid Methods, vol. 3 of Frontiers in Applied Mathematics. SIAM, Philadelphia (1987)Google Scholar
  27. 27.
    Smith, B.F., Bjørstad, P.E., Gropp, W.D.: Domain Decomposition. Cambridge University Press, Cambridge (1996)MATHGoogle Scholar
  28. 28.
    Snir, M., Otto, S., Huss-Lederman, S., Walker, D.W., Dongarra, J.J.: MPI: The Complete Reference. Vol. 1—The MPI Core, Scientific and Engineering Computation, 2nd edn. The MIT Press, Cambridge, MA (1998)Google Scholar
  29. 29.
    Stüben, K.: An introduction to algebraic multigrid. In: Trottenberg, U., Oosterlee, C., Schüller, A. (eds.) Multigrid, pp. 413–532. Academic Press, London (2001)Google Scholar
  30. 30.
    Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory. Springer, Berlin (2005)Google Scholar
  31. 31.
    Tuminaro, R.S., Tong, C.: Parallel smoothed aggregation multigrid: Aggregation strategies on massively parallel machines. In: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, Dallas, TX, USA, CDROM (2000)Google Scholar
  32. 32.
    Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56, 179–196 (1996)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Yavneh, I.: A method for devising efficient multigrid smoothers for complicated PDE systems. SIAM J. Sci. Comput. 14, 1437–1463 (1993)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Yavneh, I.: Coarse-grid correction for nonelliptic and singular perturbation problems. SIAM J. Sci. Comput. 19, 1682–1699 (1998)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alfio Borzì
    • 1
  • Valentina De Simone
    • 2
  • Daniela di Serafino
    • 2
    • 3
  1. 1.Institut für MathematikUniversität WürzburgWürzburgGermany
  2. 2.Dipartimento di Matematica e FisicaSeconda Università degli Studi di NapoliCasertaItaly
  3. 3.Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR), CNRNaplesItaly

Personalised recommendations