Advertisement

Computing and Visualization in Science

, Volume 15, Issue 6, pp 319–329 | Cite as

Preconditioning of wavelet BEM by the incomplete Cholesky factorization

  • Helmut HarbrechtEmail author
Article

Abstract

The present paper is dedicated to the preconditioning of boundary element matrices which are given in wavelet coordinates. We investigate the incomplete Cholesky factorization (ICF) for a pattern which includes also the coefficients of all off-diagonal bands associated with the level–level-interactions. The pattern is chosen in such a way that the ICF is computable in log-linear complexity. Numerical experiments are performed to quantify the effects of the proposed preconditioning.

Keywords

Boundary Element Method Boundary Integral Equation Hypersingular Integral Equation Boundary Integral Operator Initial Graphic Exchange Specification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Beylkin, G., Coifman, R., Rokhlin, V.: The fast wavelet transform and numerical algorithms. Commun. Pure Appl. Math. 44, 141–183 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Carstensen, C., Kuhn, M., Langer, U.: Fast parallel solvers for symmetric boundary element domain factorization methods. Numer. Math. 79, 321–347 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numer. 6, 55–228 (1997)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Dahmen, W., Harbrecht, H., Schneider, R.: Compression techniques for boundary integral equations. Optimal complexity estimates. SIAM J. Numer. Anal. 43, 2251–2271 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math. 63, 315–344 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Dahmen, W., Prößdorf, S., Schneider, R.: Multiscale methods for pseudo-differential equations on smooth closed manifolds. In: Chui, C.K., Montefusco, L., Puccio, L. (eds.) Proceedings of the International Conference on Wavelets: Theory, Algorithms, and Applications, pp. 385–424 (1994)Google Scholar
  7. 7.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulation. J. Comput. Phys. 73, 325–348 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Hackbusch, W.: A sparse matrix arithmetic based on \(\cal {H}\)-matrices. Part I: Introduction to \(\cal {H}\)-matrices. Computing 64, 89–108 (1999)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Handcock, M.S., Wallis, J.R.: An approach to statistical spatial-temporal modeling of meteorological fields. J. Am. Stat. Assoc. 89(426), 368–390 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Harbrecht, H.: A Newton method for Bernoulli’s free boundary problem in three dimensions. Computing 82, 11–30 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Harbrecht, H., Peters, M., Schneider, R.: On the low-rank approximation by the pivoted Cholesky decomposition. Appl. Numer. Math. 62(4), 428–440 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Harbrecht, H., Hohage, T.: A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Probl. Imaging 3(2), 353–371 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Harbrecht, H., Randrianarivony, M.: Wavelet BEM on molecular surfaces. Parametrization and implementation. Computing 86(1), 1–22 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Harbrecht, H., Randrianarivony, M.: From computer aided design to wavelet BEM. Comput. Vis. Sci. 13(2), 69–82 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Harbrecht, H., Randrianarivony, M.: Wavelet BEM on molecular surfaces. Solvent excluded surfaces. Computing 92(4), 335–364 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Harbrecht, H., Paiva, F., Pérez, C., Schneider, R.: Wavelet preconditioning for the coupling of FEM-BEM. Numer. Linear Algebra Appl. 10, 197–222 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Harbrecht, H., Schneider, R.: Biorthogonal wavelet bases for the boundary element method. Math. Nachr. 269–270, 167–188 (2004)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Harbrecht, H., Schneider, R.: Wavelet Galerkin schemes for boundary integral equations. Implementation and quadrature. SIAM J. Sci. Comput. 27(4), 1347–1370 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Harbrecht, H., Stevenson, R.: Wavelets with patchwise cancellation properties. Math. Comput. 75(256), 1871–1889 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Heuer, N., Maischak, M., Stephan, E.: Preconditioned minimum residual iteration for the h-p-version of the coupled FEM/BEM with quasi-uniform meshes. Linear Algebra Appl. 6, 435–456 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Hoschek, J., Lasser, D.: Grundlagen der geometrischen Datenverarbeitung. Teubner, Stuttgart (1989)CrossRefzbMATHGoogle Scholar
  23. 23.
    Jaffard, S.: Wavelet methods for fast resolution of elliptic equations. SIAM J. Numer. Anal. 29, 965–986 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Matérn, B.: Spatial Variation, vol. 36, 2nd edn. Lecture Notes in Statistics, Springer, Berlin (1986)Google Scholar
  25. 25.
    Miertuš, S., Scrocco, E., Tomasi, J.: Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55, 117–129 (1981)CrossRefGoogle Scholar
  26. 26.
    Lage, C., Schwab, C.: A wavelet-Galerkin boundary element method on polyhedral surfaces in \({ R}^3\). In: Numerical Treatment of Multi-scale Problems (Kiel, 1997), vol. 70, pp. 104–118. Notes Numerical Fluid Mechanics, Vieweg, Braunschweig (1999)Google Scholar
  27. 27.
    von Petersdorff, T., Schwab, C.: Wavelet approximation for first kind integral equations on polygons. Numer. Math. 74, 479–519 (1996)Google Scholar
  28. 28.
    von Petersdorff, T., Schwab, C.: Sparse wavelet methods for operator equations with stochastic data. Appl. Math. 51(2), 145–180 (2006) Google Scholar
  29. 29.
    Sauter, S., Schwab, C.: Boundary Element Methods. Springer, Berlin (2010)Google Scholar
  30. 30.
    Schmidlin, G., Schwab, C.: Wavelet Galerkin BEM on unstructured meshes by aggregation. In: Multiscale and Multiresolution Methods, vol. 20, pp. 359–378. Lecture Notes in Computer Science Engineering, Springer, Berlin (2002)Google Scholar
  31. 31.
    Schwab, C., Todor, R.: Karhunen–Loéve approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 217, 100–122 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Schneider, R.: Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur Lösung großer vollbesetzter Gleichungssysteme. Teubner, Stuttgart (1998)CrossRefzbMATHGoogle Scholar
  33. 33.
    Steinbach, O.: Numerical approximation methods for elliptic boundary value problems. Finite and boundary elements. Springer, New York (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität BaselBaselSwitzerland

Personalised recommendations