Computing and Visualization in Science

, Volume 14, Issue 8, pp 385–400 | Cite as

Numerical investigation of homogenized Stokes–Nernst–Planck–Poisson systems



We consider charged transport within a porous medium, which at the pore scale can be described by the non-stationary Stokes–Nernst–Planck–Poisson (SNPP) system. We state three different homogenization results using the method of two-scale convergence. In addition to the averaged macroscopic equations, auxiliary cell problems are solved in order to provide closed-form expressions for effective coefficients. Our aim is to study numerically the convergence of the models for vanishing microstructure, i. e., the behavior for \(\varepsilon \rightarrow 0\), where \(\varepsilon \) is the characteristic ratio between pore diameter and size of the porous medium. To this end, we propose a numerical scheme capable of solving the fully coupled microscopic SNPP system and also the corresponding averaged systems. The discretization is performed fully implicitly in time using mixed finite elements in two space dimensions. The averaged models are evaluated using simulation results and their approximation errors in terms of \(\varepsilon \) are estimated numerically.


Homogenization Two-scale convergence Porous media Stokes/Darcy–Nernst–Planck–Poisson system Colloidal transport Numerical simulation  Mixed finite elements 

Mathematics Subject Classification

35B27 76M10 76M50 76Sxx 76Rxx 76Wxx 



The authors want to thank N. Marheineke, K. U. Totsche, T. van Noorden, and V. Aizinger for helpful discussions. F. F. was partially funded by the German Research Foundation (DFG) within the framework of the Project To 184/7-1,2. N. R. was partially funded by the Deutsche Telekom Foundation.


  1. 1.
    Allaire, G., et al.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Allaire, G., Mikelić, A., Piatnitski, A.: Homogenization of the linearized ionic transport equations in rigid periodic porous media. J. Math. Phys. 51(12), 123 103 (2010)CrossRefGoogle Scholar
  3. 3.
    Allaire, G., Brizzi, R., Dufrêche, J.-F., Mikelić, A., Piatnitski, A.: Ion transport in porous media: derivation of the macroscopic equations using upscaling and properties of the effective coefficients. Comput. Geosci. pp. 1–17 (2013). doi:10.1007/s10596-013-9342-6
  4. 4.
    Aubin, J.P.: Un théorème de compacité. C. R. Acad. Sci. 279, 5042–5044 (1963)MathSciNetGoogle Scholar
  5. 5.
    Auriault, J., Lewandowska, J.: On the cross-effects of coupled macroscopic transport equations in porous media. Transp. Porous Media 16(1), 31–52 (1994)CrossRefGoogle Scholar
  6. 6.
    Bennethum, L.S., Cushman, J.: Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics: I. Macroscale field equations. Transp. Porous Media 47(3), 309–336 (2002a)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bennethum, L.S., Cushman, J.: Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics: II. Constitutive theory. Transp. Porous Media 47, 337–362 (2002b)Google Scholar
  8. 8.
    Bensoussan, A., Lions, J., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and Its Applications. North Holland Publishing Company, Amsterdam (1978)Google Scholar
  9. 9.
    Bourgat, J.: Numerical experiments of the homogenization method. In: Glowinski, R., Lions, J., Laboria, I. (eds.). Computing Methods in Applied Sciences and Engineering, 1977, I. Lecture Notes in Mathematics, vol. 704, pp. 330–356. Springer, Berlin/Heidelberg (1979)Google Scholar
  10. 10.
    Brezzi, F., Fortin, M.: Mixed and hybrid finite elements methods. Springer Series in Computational Mathematics. Springer, New York (1991)Google Scholar
  11. 11.
    Chavarria-Krauser, A., Ptashnyk, M.: Homogenization of long-range auxin transport in plant tissues. Nonlinear Anal. Real World Appl. 11(6), 4524–4532 (2010)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Cioranescu, D., Saint Jean Paulin, J.: Homogenization of Reticulated Structures. Applied Mathematical Sciences, vol. 136. Springer, Berlin (1999)Google Scholar
  13. 13.
    Douglas Jr, J., Roberts, J.E.: Global estimates for mixed methods for second order elliptic equations. Math. Comput. 44(169), 39–52 (1985)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Eck, C.: A two-Scale Phase Field Model for Liquid-Solid Phase Transitions of Binary Mixtures with Dendritic Microstructure. Habilitation Thesis. University of Erlangen–Nuremberg (2004)Google Scholar
  15. 15.
    Efendiev, Y., Hou, T.: Multiscale Finite Element Methods: Theory and Applications. Surveys and Tutorials in the Applied Mathematical Sciences. Springer, New York (2009)Google Scholar
  16. 16.
    Elimelech, M., Gregory, J., Jia, X., Williams, R.A.: Particle Deposition and Aggregation, Measurement, Modelling and Simulation. Butterworth-Heinemann, Oxford (1995)Google Scholar
  17. 17.
    Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Oxford University Press, Oxford (2005)MATHGoogle Scholar
  18. 18.
    Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences. Springer, New York (2004)Google Scholar
  19. 19.
    Fatima, T., Muntean, A., Ptashnyk, M.: Unfolding-based corrector estimates for a reaction-diffusion system predicting concrete corrosion. Appl. Anal. 91(6), 1129–1154 (2012)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Frank, F.: (accessed August 24, 2012) (2012)
  21. 21.
    Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics. Springer, Berlin (1986)Google Scholar
  22. 22.
    Griebel, M., Klitz, M.: Homogenization and numerical simulation of flow in geometries with textile microstructures. Multiscale Model. Simul. 8(4), 1439–1460 (2010)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Griso, G.: Error estimates and unfolding for periodic homogenization. Asymptot. Anal. 40, 169–186 (2004)MathSciNetGoogle Scholar
  24. 24.
    Griso, G.: Interior error estimates for periodic homogenization. Comptes Rendus Mathématique 340(3), 251–254 (2005)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Herz, M., Ray, N., Knabner, P.: Existence and uniqueness of a global weak solution of a Darcy–Nernst–Planck–Poisson system. GAMM-Mitteilungen 35(2), 191–208 (2012)Google Scholar
  26. 26.
    Hood, P., Taylor, C.: A numerical solution of the Navier Stokes equations using the finite element technique. Comput. Fluids 1(1), 73–100 (1973)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Hornung, U.: Homogenization and Porous Media. Interdisciplinary Applied Mathematics. Springer, Berlin (1997)Google Scholar
  28. 28.
    Hunter, R.J.: Foundations of Colloid Science. Oxford University Press, Oxford (2007)Google Scholar
  29. 29.
    Jikov, V., Kozlov, S., Oleinik, O.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)CrossRefGoogle Scholar
  30. 30.
    Kirby, B.J.: Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  31. 31.
    Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes Mathématiques, Gauthier-Villars, Paris (1969)Google Scholar
  32. 32.
    Löhner, R.: Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods, 2nd edn. Wiley, Chichester (2008)MATHCrossRefGoogle Scholar
  33. 33.
    Looker, J.R.: The Electrokinetics of Porous Colloidal Particles. PhD thesis. University of Melbourne (2006)Google Scholar
  34. 34.
    Markovich, P.A.: The Stationary Semiconductor Device Equations. Springer, Berlin (1986)CrossRefGoogle Scholar
  35. 35.
    Masliyah, J.H., Bhattacharjee, S.: Electrokinetic and Colloid Transport Phenomena. Wiley-Interscience, Hoboken, New Jersey (2006)Google Scholar
  36. 36.
    Melnik, T.A., Sivak, O.A.: Asymptotic analysis of a parabolic semilinear problem with nonlinear boundary multiphase interactions in a perforated domain. J. Math. Sci. 164(3), 427–453 (2010)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ming, P., Yue, X.: Numerical methods for multiscale elliptic problems. J. Comput. Phys. 214(1), 421–445 (2006)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Moyne, C., Murad, M.A.: Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure. Int. J. Solids Struct. 39(25), 6159–6190 (2002)MATHCrossRefGoogle Scholar
  39. 39.
    Moyne, C., Murad, M.A.: A two-scale model for coupled electro-chemo-mechanical phenomena and Onsager’s reciprocity relations in expansive clays: I Homogenization analysis. Transp. Porous Media 62(3), 333–380 (2006)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3), 608–623 (1989)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Orive, R., Zuazua, E.: Finite difference approximation of homogenization problems for elliptic equations.In. Multiscale Model. Simul. 4(1), 36–87 (2005)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Probstein, R.: Physicochemical Hydrodynamics: An Introduction. Wiley-Interscience, New York (2003)Google Scholar
  43. 43.
    Prohl, A., Schmuck, M.: Convergent finite element discretizations of the Navier–Stokes–Nernst–Planck–Poisson system. ESAIM Math. Model. Numer. Anal. 44(03), 531–571 (2010)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Raviart, P.A., Thomas, J.M.: A mixed finite element method for second-order elliptic problems. In: Mathematical Aspects of the Finite Element Method, Lectures Notes in Mathematics. vol. 606, pp. 292–315 (1977)Google Scholar
  45. 45.
    Ray, N., Muntean, A., Knabner, P.: Rigorous homogenization of a Stokes–Nernst–Planck–Poisson system. J. Math. Anal. Appl. 390(1), 374–393 (2012a)Google Scholar
  46. 46.
    Ray, N., van Noorden, T., Frank, F., Knabner, P.: Multiscale modeling of colloid and fluid dynamics in porous media including an evolving microstructure. Transp. Porous Media 95(3), 669–696 (2012b) Google Scholar
  47. 47.
    Roache, P.J.: Verification of codes and calculations. AIAA J. 36(5), 696–702 (1998)CrossRefGoogle Scholar
  48. 48.
    Roache, P.J.: Code verification by the method of manufactured solutions. J. Fluids Eng. 124(1), 4–10 (2002)CrossRefGoogle Scholar
  49. 49.
    Roubíček, T.: Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel (2005)Google Scholar
  50. 50.
    Roubíček, T.: Incompressible ionized fluid mixtures. Continuum Mech. Thermodyn. 17(7), 493–509 (2006)MATHCrossRefGoogle Scholar
  51. 51.
    Salari, K., Knupp, P.: Code verification by the method of manufactured solutions. Sandia National Laboratories, Albuquerque (2000)CrossRefGoogle Scholar
  52. 52.
    Sarkis, M., Versieux, H.: Convergence analysis for the numerical boundary corrector for elliptic equations with rapidly oscillating coefficients. SIAM J. Numer. Anal. 46(2), 545–576 (2008)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Schmuck, M.: Analysis of the Navier–Stokes–Nernst–Planck–Poisson system. Math. Models Methods Appl. Sci. 19(06), 993–1014 (2009)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Schmuck, M.: Modeling and deriving porous media Stokes–Poisson–Nernst–Planck equations by a multiple-scale approach. Commun. Math. Sci. 9(3), 685–710 (2011)MathSciNetGoogle Scholar
  55. 55.
    Schmuck, M.: First error bounds for the porous media approximation of the Poisson–Nernst–Planck equations. ZAMM 92(4), 304–319 (2012)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Smith, D., Pivonka, P., Jungnickel, C., Fityus, S.: Theoretical analysis of anion exclusion and diffusive transport through platy-clay soils. Transp. Porous Media. 57(3), 251–277 (2004)CrossRefGoogle Scholar
  57. 57.
    Stroud, A.: Approximate Calculation of Multiple Integrals. Prentice-Hall Series in Automatic Computation, Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  58. 58.
    van Noorden, T.L.: Crystal precipitation and dissolution in a porous medium: effective equations and numerical experiments. Multiscale Model. Simul. 7(3), 1220–1236 (2009)MATHCrossRefGoogle Scholar
  59. 59.
    Van de Ven, T.G.: Colloidal Hydrodynamics. Academic Press, London (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Chair of Applied Mathematics I, Department of MathematicsFriedrich–Alexander University of Erlangen–NurembergErlangenGermany

Personalised recommendations