Computing and Visualization in Science

, Volume 14, Issue 8, pp 371–383 | Cite as

Photorealistic visualization and fluid animation: coupling of Maya with a two-phase Navier-Stokes fluid solver



We have coupled the three-dimensional solver for the two-phase incompressible Navier-Stokes equations NaSt3DGPF with Autodesk Maya. Maya is the industry standard software framework for the creation of three-dimensional animations. The parallel level-set-based fluid solver NaSt3DGPF simulates the interaction of two fluids like air and water. It uses high-order finite difference discretization methods that are designed for physics applications. By coupling both applications, we are now able to set up scientific fluid simulations in an easy-to-use user interface. Moreover, the rendering techniques provided by Maya allow us to create photorealistic visualizations for computational fluid dynamics problems and support the creation of highly visually realistic fluid simulations for animation movies. Altogether, we obtain an easy usable and fully coupled fluid animation toolkit for two-phase fluid simulations. These are the first published results of the full integration of a physics-oriented, high-order grid-based parallel two-phase fluid solver in Maya, at least to our knowledge.


Photorealistic visualization Computational fluid dynamics User interface Multi-phase flows Water Animation 



This work was supported in parts by the Sonder- forschungsbereich 611 Singular phenomena and scaling in mathematical models funded by the Deutsche Forschungsgemeinschaft.

Supplementary material

791_2013_188_MOESM1_ESM.mpeg (64.1 mb)
Supplementary material 1 (mpeg 65606 KB)
791_2013_188_MOESM2_ESM.mp4 (54 mb)
Supplementary material 2 (mp4 55284 KB)


  1. 1.
    Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22(104), 745–762 (1968)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Cline, H.E., Lorensen, W.E.: Marching cubes: a high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169 (1987). doi: 10.1145/37402.37422 CrossRefGoogle Scholar
  3. 3.
    Croce, R., Engel, M., Strybny, J., Thorenz, C.: A parallel 3d free surface Navier-Stokes solver for high performance computing at the german waterways administration. In: The 7th International Conference on Hydroscience and Engineering (ICHE-2006). Philadelphia, USA (2006)Google Scholar
  4. 4.
    Croce, R.: Numerische Simulation der Interaktion von inkompressiblen Zweiphasenströmungen mit Starrkörpern in drei Raumdimensionen. PhD thesis (2010)Google Scholar
  5. 5.
    Croce, R., Griebel, M., Schweitzer, M.A.: Numerical simulation of bubble and droplet-deformation by a level set approach with surface tension in three dimensions. Int. J. Numer. Methods Fluids 62(9), 963–993 (2009). doi: 10.1002/fld.2051 MathSciNetGoogle Scholar
  6. 6.
    Décoret, X., Eisemann, E.: Fast scene voxelization and applications. In: I3D ’06: Proceedings of the 2006 symposium on Interactive 3D graphics and games, pp. 71–78. ACM, New York (2006). doi: 10.1145/1111411.1111424
  7. 7.
    Dornseifer, T., Griebel, M., Neunhoeffer, T.: Numerical Simulation in Fluid Dynamics, a Practical Introduction. SIAM, Philadelphia (1998)Google Scholar
  8. 8.
    Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 83–116 (2002). doi: 10.1006/jcph.2002.7166. URL: Google Scholar
  9. 9.
    Enright, D., Losasso, F., Fedkiw, R.: A fast and accurate semi-lagrangian particle level set method. Comput. Struct. 83, 479–490 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In: SIGGRAPH 2001: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 15–22. ACM, New York (2001). doi: 10.1145/383259.383260
  11. 11.
    Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999). doi: 10.1006/jcph.1999.6236 MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Foster, N., Fedkiw, R.: Practical animation of liquids. In: SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 23–30. ACM, New York (2001). doi: 10.1145/383259.383261
  13. 13.
    Foster, N., Metaxas, D.: Modeling the motion of a hot, turbulent gas. In: SIGGRAPH 1997: Proceedings of the 24th Annual Conference on Computer graphics and Interactive Techniques, pp. 181–188. ACM Press/Addison-Wesley Publishing Co., New York (1997). doi: 10.1145/258734.258838
  14. 14.
    Foster, N., Metaxas, D.: Realistic animation of liquids. Graphical models and image processing: GMIP 58(5), 471–483 (1996). doi: 10.1006/gmip.1996.0039
  15. 15.
    Gould, D.: Complete Maya Programming: An Extensive Guide to MEL and the C++ API. Elsevier, Amsterdam (2003)Google Scholar
  16. 16.
    Griebel, M., Metsch, B., Oeltz, D., Schweitzer, M.A.: Coarse grid classification: a parallel coarsening scheme for algebraic multigrid methods. Numer. Linear Algebra Appl. 13(2–3), 193–214 (2006)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Griebel, M., Zaspel, P.: A multi-GPU accelerated solver for the three-dimensional two-phase incompressible Navier-Stokes equations. Comput. Sci. Res. Dev. 25(1–2), 65–73 (2010). doi: 10.1007/s00450-010-0111-7 CrossRefGoogle Scholar
  18. 18.
    Hong, J.M., Kim, C.H.: Discontinuous fluids. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Papers, pp. 915–920. ACM, New York (2005). doi: 10.1145/1186822.1073283
  19. 19.
    Hong, J.M., Lee, H.Y., Yoon, J.C., Kim, C.H.: Bubbles alive. In: SIGGRAPH 2008: ACM SIGGRAPH 2008 papers, pp. 1–4. ACM, New York (2008). doi: 10.1145/1399504.1360647
  20. 20.
    Kang, M., Fedkiw, R., Liu, X.D.: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15(3), 323–360 (2000)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Kaufman, A., Shimony, E.: 3d scan-conversion algorithms for voxel-based graphics. In: SI3D ’86: Proceedings of the 1986 workshop on Interactive 3D graphics, pp. 45–75. ACM, New York (1987). doi: 10.1145/319120.319126
  22. 22.
    Lee, H.Y., Hong, J.M., Kim, C.H.: Interchangeable SPH and level set method in multiphase fluids. Vis. Comput. 25(5), 713–718 (2009). doi: 10.1007/s00371-009-0339-z MathSciNetCrossRefGoogle Scholar
  23. 23.
    Losasso, F., Shinar, T., Selle, A., Fedkiw, R.: Multiple interacting liquids. In: SIGGRAPH 2006: ACM SIGGRAPH 2006 Papers, pp. 812–819. ACM, New York (2006). doi: 10.1145/1179352.1141960
  24. 24.
    Losasso, F., Talton, J.O., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Gr. 14(4), 797–804 (2008). doi: 10.1109/TVCG.2008.37 Google Scholar
  25. 25.
    Mihalef, V., Metaxas, D.N., Sussman, M.: Simulation of two-phase flow with sub-scale droplet and bubble effects. Comput. Graph. Forum 28(2), 229–238 (2009)CrossRefGoogle Scholar
  26. 26.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992). doi: 10.1146/annurev.aa.30.090192.002551 CrossRefGoogle Scholar
  27. 27.
    Montani, C., Scateni, R., Scopigno, R.: A modified look-up table for implicit disambiguation of marching cubes. Vis. Comput. 10(6), 353–355 (1994)Google Scholar
  28. 28.
    Selle, A., Rasmussen, N., Fedkiw, R.: A vortex particle method for smoke, water and explosions. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Papers, pp. 910–914. ACM, New York (2005). doi: 10.1145/1186822.1073282
  29. 29.
    Selle, A., Fedkiw, R., Kim, B., Liu, Y., Rossignac, J.: An unconditionally stable MacCormack method. J. Sci. Comput. 35(2–3), 350–371 (2008). doi: 10.1007/s10915-007-9166-4 MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Stam, J.: Stable fluids. In: Proceedings of SIGGRAPH 1999, Computer Graphics Proceedings, Annual Conference Series, pp. 121–128 (1999)Google Scholar
  31. 31.
    Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994). doi: 10.1006/jcph.1994.1155. URL Google Scholar
  32. 32.
    Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., Ueki, H.: Realistic animation of fluid with splash and foam. Comput. Graph. Forum 22(3), 391–400 (2003)CrossRefGoogle Scholar
  33. 33.
    Thuerey, N.: Fluid simulation with blender. Dr. Dobbs Journal (2006)Google Scholar
  34. 34.
    Verleye, B., Croce, R., Griebel, M., Klitz, M., Lomov, S., Morren, G., Sol, H., Verpoest, I., Roose, D.: Permeability of textile reinforcements: simulation, influence of shear, validation. Compos. Sci. Technol. 68(13), 2804–2810 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute for Numerical SimulationUniversity of BonnBonnGermany

Personalised recommendations