Computing and Visualization in Science

, Volume 14, Issue 4, pp 167–180 | Cite as

Numerical simulation of the motion of red blood cells and vesicles in microfluidic flows

  • Thomas Franke
  • Ronald H. W. HoppeEmail author
  • Christopher Linsenmann
  • Lothar Schmid
  • Carina Willbold
  • Achim Wixforth


We study the mathematical modeling and numerical simulation of the motion of red blood cells (RBC) and vesicles subject to an external incompressible flow in a microchannel. RBC and vesicles are viscoelastic bodies consisting of a deformable elastic membrane enclosing an incompressible fluid. We provide an extension of the finite element immersed boundary method by Boffi and Gastaldi (Comput Struct 81:491–501, 2003), Boffi et al. (Math Mod Meth Appl Sci 17:1479–1505, 2007), Boffi et al. (Comput Struct 85:775–783, 2007) based on a model for the membrane that additionally accounts for bending energy and also consider inflow/outflow conditions for the external fluid flow. The stability analysis requires both the approximation of the membrane by cubic splines (instead of linear splines without bending energy) and an upper bound on the inflow velocity. In the fully discrete case, the resulting CFL-type condition on the time step size is also more restrictive. We perform numerical simulations for various scenarios including the tank treading motion of vesicles in microchannels, the behavior of ‘healthy’ and ‘sick’ RBC which differ by their stiffness, and the motion of RBC through thin capillaries. The simulation results are in very good agreement with experimentally available data.


Finite element immersed boundary method Stability analysis CFL-type condition Red blood cells Vesicles Microfluidic flows 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abkarian M., Lartigue C., Viallat A.: Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Phys. Rev. Lett. 88, 068103 (2002)CrossRefGoogle Scholar
  2. 2.
    Abkarian M., Viallat A.: Dynamics of vesicles in a wall-bounded shear flow. Biophys. J. 89, 1055 (2005)CrossRefGoogle Scholar
  3. 3.
    Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P.: Molekularbiologie der Zelle. Weinheim, Wiley-VCH (2004)Google Scholar
  4. 4.
    An X., Lecomte M.C., Chasis J.A., Mohandas N., Gratzer W.: Shear-response of the spectrin dimer-tetramer equilibrium in the red blood cell membrane. J. Biol. Chem. 277(35), 31796–31800 (2002)CrossRefGoogle Scholar
  5. 5.
    Anadere I., Chmiel H., Hess H., Thurston G.B.: Clinical blood rheology. Biorheology 16, 171–178 (1979)Google Scholar
  6. 6.
    Bagchi P.: Mesoscale simulation of blood flow in small vessels. Biophys. J. 92, 1858–1877 (2007)CrossRefGoogle Scholar
  7. 7.
    Bagchi P., Johnson P., Popel A.: Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J. Biomech. Eng. 127, 1070–1080 (2005)CrossRefGoogle Scholar
  8. 8.
    Baumler H., Neu B., Donath E., Kiesewetter H.: Basic phenomena of red blood cell rouleaux formation. Biorheology 36, 439–442 (1999)Google Scholar
  9. 9.
    Beaucourt J., Rioual F., Seon T., Biben T., Misbah C.: Steady to unsteady dynamics of a vesicle in a flow. Phys. Rev. E 69, 011906 (2004)CrossRefGoogle Scholar
  10. 10.
    Biben T., Misbah C.: Tumbling of vesicles under shear flow within an advected-field approach. Phys. Rev. E 67, 031908 (2003)CrossRefGoogle Scholar
  11. 11.
    Boffi D., Gastaldi L.: A finite element approach for the immersed boundary method. Comput. Struct. 81, 491–501 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Boffi D., Gastaldi L., Heltai L.: Numerical stability of the finite element immersed boundary method. Math. Mod. Meth. Appl. Sci. 17, 1479–1505 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Boffi D., Gastaldi L., Heltai L.: On the CFL condition for the finite element immersed boundary method. Comput. Struct. 85, 775–783 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Boffi D., Gastaldi L., Heltai L., Peskin C.: On the hyper-elastic formulation of the immersed boundary method. Comput. Meth. Appl. Mech. Eng. 197, 2210–2231 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Braasch D.: Red cell deformability in capillary flow. Physiol. Rev. 51(4), 679–701 (1971)Google Scholar
  16. 16.
    Braunmüller, S.: Viskoelastische Deformation roter Blutkörperchen. Master’s Thesis. Institut für Physik, Universität Augsburg, 2007Google Scholar
  17. 17.
    Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin, Heidelberg, New York, NY (1991)CrossRefzbMATHGoogle Scholar
  18. 18.
    Chabanel A., Chien S., Reinhart W.: Increased resistance to membrane deformation of shape-transformed human red blood cell. Blood 69(3), 739 (1987)Google Scholar
  19. 19.
    Chabanel A., Flamm M., Sung K.L.P., Lee M.M., Schachter D., Chien S.: Influence of cholesterol content on red cell membrane viscosity and fluidity. Biophys. J. 44, 171–176 (1983)CrossRefGoogle Scholar
  20. 20.
    Chasis J.A., Mohandas N.: Erythrocyte membrane deformability and stability: two distinct membrane properties that are independently regulated by skeletal protein associations. J. Cell. Biol. 103, 343–350 (1986)CrossRefGoogle Scholar
  21. 21.
    Chien S.: Red cell deformability and its relevance to blood flow. Ann. Rev. Physiol. 49, 177 (1987)CrossRefGoogle Scholar
  22. 22.
    Chien S.: Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168, 977–978 (1970)CrossRefGoogle Scholar
  23. 23.
    Chien S., Reinhart W.: Red cell rheology in stomatocyte-echinocyte transformation: roles of cell geometry and cell shape. Blood 67(4), 1110 (1986)Google Scholar
  24. 24.
    Chmiel H., Anadere I., Walitza E.: The determination of blood viscoelasticity in clinical hemorheology. Clin. Hemorheol. 10, 363–374 (1990)Google Scholar
  25. 25.
    Ciarlet P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia, PA (2002)CrossRefGoogle Scholar
  26. 26.
    Cokelet G.R.: Rheology and hemodynamics. Ann. Rev. Physiol. 42, 311–324 (1980)CrossRefGoogle Scholar
  27. 27.
    Cooper R.A.: Anemia with spur cells: a red cell defect acquired in serum and modified in the circulation. J. Clin. Inv. 48, 1820–1831 (1969)CrossRefGoogle Scholar
  28. 28.
    Danker G., Biben T., Podgorski T., Verdier C., Misbah C.: Dynamics and rheology of a dilute suspension of vesicles: higher-order theory. Phys. Rev. E 76, 041905 (2007)CrossRefGoogle Scholar
  29. 29.
    Danker G., Misbah C.: Rheology of dilute suspensions of vesicles. Phys. Rev. Lett. 98, 088104 (2007)CrossRefGoogle Scholar
  30. 30.
    Danker G., Verdier C., Misbah C.: Rheology and dynamics of vesicles suspensions in comparison with droplet emulsion. J. Non-Newtonian Fluid Mech. 152, 156–167 (2008)CrossRefzbMATHGoogle Scholar
  31. 31.
    de Haas K., Bloom C., van den Ende D., Duits M., Mellema J.: Deformation of giant lipid bilayer vesicles in shear flow. Phys. Rev. E 56, 7132 (1997)CrossRefGoogle Scholar
  32. 32.
    Dumez H., Reinhardt W.H., Guentes G., de Bruijn E.A.: Human red blood cells: rheological aspects, uptake and release of cytotoxic drugs. Crit. Rev. Clin. Lab. Sci. 41(2), 159–188 (2004)CrossRefGoogle Scholar
  33. 33.
    Dupin M.M., Halliday I., Care C.M., Alboul L., Munn L.L.: Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75, 066707 (2007)CrossRefGoogle Scholar
  34. 34.
    Eggleton C.D., Popel A.S.: Large deformation of red blood cell ghosts in simple shear flow. Phys. Fluids 10, 1834–1845 (1998)CrossRefGoogle Scholar
  35. 35.
    Evans E.A., Fung Y.C.: Improved measurements of the erythrocyte geometry. Microvasc. Res. 4, 335–347 (1972)CrossRefGoogle Scholar
  36. 36.
    Fischer T., Schmid-Schönbein H.: Tank treading motion of red blood cell membranes in viscometric flow: behavior of intracellular and extracellular markers. Blood Cells 3, 351–365 (1977)Google Scholar
  37. 37.
    Fischer T.M., Stöhr-Liesen M., Schmid-Schönbein H.: The red cell as a fluid droplet: tank treading-like motion of the human erythrocyte membrane in shear flow. Science 202, 894–896 (1978)CrossRefGoogle Scholar
  38. 38.
    Grisvard P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA (1985)zbMATHGoogle Scholar
  39. 39.
    Hochmuth R.M., Waugh R.E.: Erythrocyte membrane elasticity and viscosity. Ann. Rev. Physiol. 49, 209–219 (1987)CrossRefGoogle Scholar
  40. 40.
    Isogai Y., Ikemoto S., Kuchiba K., Ogawa J., Yokose T.: Abnormal blood viscoelasticity in diabetic microangiopathy. Clin. Hemorheol. 11, 175–182 (1991)Google Scholar
  41. 41.
    Kantsler V., Steinberg V.: Orientation and dynamics of a vesicle in tank-treading motion in shear flow. Phys. Rev. Lett. 95, 258101 (2005)CrossRefGoogle Scholar
  42. 42.
    Keller S.R., Skalak R.: Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 27 (1982)CrossRefzbMATHGoogle Scholar
  43. 43.
    Khodadad J.K., Waugh R.E., Podolski J.L., Steck T.L.: Remodeling the shape of the skeleton in the intact red cell. Biophys. J. 70, 1036–1044 (1996)CrossRefGoogle Scholar
  44. 44.
    Kraus M., Wintz W., Seifert U., Lipowsky R.: Fluid vesicles in shear flow. Phys. Rev. Lett. 77, 3685 (1996)CrossRefGoogle Scholar
  45. 45.
    Lee C.J., Kim K., Park H., Song J., Lee C.: Rheological properties of erythrocytes from male hypercholesterolemia. Microvasc. Res. 67, 133–138 (2004)CrossRefzbMATHGoogle Scholar
  46. 46.
    Liu W.K., Liu Y., Farrell D., Zhang L., Wang X.S., Fukui Y., Patankar N., Zhang Y., Bajaj C., Lee J., Hong J., Chen X., Hsu H.: Immersed finite element method and its applications to biological methods. Comput. Methods Appl. Mech. Eng. 195, 1722–1749 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Liu W.K., Liu Y.: Rheology of red blood cell aggregates by computer simulation. J. Comp. Phys. 220, 139–154 (2006)CrossRefzbMATHGoogle Scholar
  48. 48.
    Marascalco P.J., Ritchie S.P., Snyder T.A., Kameneva M.V.: Development of standard tests to examine viscoelastic properties of blood of experimental animals for pediatric mechanical support device evaluation. ASAIO 52, 567–574 (2006)CrossRefGoogle Scholar
  49. 49.
    More R.B., Thurston G.B.: Intrinsic viscoelasticity of blood cell suspensions: effects of erythrocyte deformability. Biorheology 24, 297–309 (1987)Google Scholar
  50. 50.
    Noguchi H., Gompper G.: Fluid vesicles with viscous membranes in shear flow. Phy. Rev. Lett. 93, 258102 (2004)CrossRefGoogle Scholar
  51. 51.
    Noguchi H., Gompper G.: Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Nat. Acad. Sci. USA 102, 14159–14164 (2005)CrossRefGoogle Scholar
  52. 52.
    Noguchi H., Gompper G.: Swinging and tumbling of fluid vesicles in shear flow. Phys. Rev. Lett. 98, 128103 (2007)CrossRefGoogle Scholar
  53. 53.
    Noguchi H., Gompper G., Schmid L., Wixforth A., Franke T.: Dynamics of fluid vesicles in flow through structured microchannels. Eur. Phys. Lett 89, 28002 (2010)CrossRefGoogle Scholar
  54. 54.
    Owen J.S., Brown D.J.C., Harry D.S., Mcintyre N.: Erythrocyte echinocytosis in liver disease: role of abnormal plasma high density llipoproteins. J. Clin. Inv. 76, 2275–2285 (1985)CrossRefGoogle Scholar
  55. 55.
    Pan T.-W., Wang T.: Dynamical simulation of red blood cell rheology in microvessels. Int. J. Numer. Anal. Model. 6, 455–473 (2009)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Peskin C.: Numerical analysis of flood flow in the heart. J. Comput. Phys. 25, 220–252 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Peskin, C.: The immersed boundary method. Acta Numerica 11, 479–517 (2002)Google Scholar
  58. 58.
    Peskin C., McQueen D.M.: A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81, 372–405 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Peskin C., Printz B.F.: Improved volume conservation in the computation of flows with immersed elastic boundaries. J. Comput. Phys. 105, 33–46 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Pozrikidis C.: Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow. J. Fluid Mech. 297, 123–152 (1995)CrossRefzbMATHGoogle Scholar
  61. 61.
    Pozrikidis C.: Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J. Fluid Mech. 440, 269–291 (2001)CrossRefzbMATHGoogle Scholar
  62. 62.
    Pozrikidis C.: Modeling and Simulation of Capsules and Biological Cells. Chapman & Hall/CRC, Boca Raton, FL (2003)CrossRefzbMATHGoogle Scholar
  63. 63.
    Pozrikidis C.: Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids 17, 031503 (2005)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Rioual F., Biben T., Misbah C.: Analytical analysis of a vesicle tumbling under a shear flow. Phys. Rev. E 69, 061914 (2004)CrossRefGoogle Scholar
  65. 65.
    Ripoli M., Mussawisade K., Winkler R.G., Gompper G.: Low-Reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics. Europhys. Lett. 68, 106–112 (2004)CrossRefGoogle Scholar
  66. 66.
    Rosar M.E., Peskin C.S.: Fluid flow in collapsible elastic tubes: a three-dimensional numerical model. N. Y. J. Math. 7, 281–302 (2001)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Secomb T.W., Hsu R.: Analysis of red blood cell motion through cylindrical micropores: effects of cell properties. Biophys. J. 71, 1095–1101 (1996)CrossRefGoogle Scholar
  68. 68.
    Seifert U.: Hydrodynamic lift on bound vesicles. Phys. Rev. Lett. 83, 876–879 (1999)CrossRefGoogle Scholar
  69. 69.
    Seifert U.: Fluid membranes in hydrodynamic flow fields: formalism and an application to fluctuating quasispherical vesicles in shear flow. Eur. Phys. J. B 8, 405 (1999)CrossRefGoogle Scholar
  70. 70.
    Shelby P., Rathod P.K., Ganesan K., Whiteand J.M., Chiu D.T.: A microfluidic model for single-cell capillary obstruction by plasmodium falciparum-infected erythrocytes. PNAS 100(25), 114618–114622 (2003)CrossRefGoogle Scholar
  71. 71.
    Skalak R., Chien S.: Handbook of Bioengineering. McGraw-Hill, New York, NY (1987)Google Scholar
  72. 72.
    Stoltz J., Singh M., Riha P.: Hemorheology in Practice. IOS Press, Amsterdam (1999)Google Scholar
  73. 73.
    Tao Y.-G., Götze I.O., Gompper G.: Multiparticle collision dynamics modeling of viscoelastic fluids. J. Chem. Phys. 128, 144902 (2008)CrossRefGoogle Scholar
  74. 74.
    Tartar L.: Introduction to Sobolev Spaces and Interpolation Theory. Springer, Berlin, Heidelberg, New York, NY (2007)Google Scholar
  75. 75.
    Thurston G.B.: Viscoelasticity of human blood. Biophys. J. 12, 1205–1217 (1972)CrossRefGoogle Scholar
  76. 76.
    Thurston G.B.: Effects of viscoelasticity of blood on wave propagation in the circulation. J. Biomech. 9, 13–20 (1976)CrossRefGoogle Scholar
  77. 77.
    Thurston G.B.: Viscoelastic properties of blood and blood analogs. In: Hoew, T.C. (eds) Advances in Hemodynamics and Hemorheology, pp. 1–30. JAI Press, Greenwich (1996)Google Scholar
  78. 78.
    Tsubota K., Wada S., Yamaguchi T.: Simulation study on effects of hematocrit on blood flow properties using particle method. J. Biomech. Sci. Eng. 1, 159–170 (2006)CrossRefGoogle Scholar
  79. 79.
    Tsukada K., Minamitani H., Oshio C., Sekizuka E.: Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high speed video camera system. Microvasc. Res. 61, 231–239 (2001)CrossRefGoogle Scholar
  80. 80.
    Vitkova V., Mader M., Biben T., Podgorski T.: Tumbling of lipid vesicles, enclosing a viscous fluid, under a shear flow. J. Optoelectr. Adv. Mater. 7, 261 (2005)Google Scholar
  81. 81.
    Vitkova, V., Mader, M., Misbah, C., Podgorski, T.: Rheology of dilute suspensions of vesicles and red blood cells. arXiv:0704.4287vl[cond-mat.soft] (2007)Google Scholar
  82. 82.
    Vitkova V., Mader M., Polack B., Misbah C., Podgorski T.: Micro-macro link in rheology of erythrocyte and vesicle suspensions. Biophys. J. 95, L33–L35 (2008)CrossRefGoogle Scholar
  83. 83.
    Wang T., Pan T.-W., Xing Z.W., Glowinski R.: Numerical simulation of red blood cell rouleaus in microchannels. Phys. Rev. E 79, 041916-1–041916-11 (2009)Google Scholar
  84. 84.
    Zhang J., Johnson P.C., Popel A.S.: Red blood cell aggregation and dissociation in shear flows simulated by the lattice Boltzmann method. J. Biomech. 41, 47–55 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Thomas Franke
    • 1
  • Ronald H. W. Hoppe
    • 2
    • 3
    Email author
  • Christopher Linsenmann
    • 3
  • Lothar Schmid
    • 1
  • Carina Willbold
    • 3
  • Achim Wixforth
    • 1
  1. 1.Institute of PhysicsUniversity of AugsburgAugsburgGermany
  2. 2.Department of MathematicsUniversity of HoustonHoustonUSA
  3. 3.Institute of MathematicsUniversity of AugsburgAugsburgGermany

Personalised recommendations