Advertisement

Computing and Visualization in Science

, Volume 13, Issue 3, pp 129–143 | Cite as

Efficient monolithic simulation techniques for the stationary Lattice Boltzmann equation on general meshes

  • T. Hübner
  • S. Turek
Regular Article

Abstract

In this paper, we present special discretization and solution techniques for the numerical simulation of the Lattice Boltzmann equation (LBE). In Hübner and Turek (Computing, 81:281–296, 2007), the concept of the generalized mean intensity had been proposed for radiative transfer equations which we adapt here to the LBE, treating it as an analogous (semi-discretized) integro-differential equation with constant characteristics. Thus, we combine an efficient finite difference-like discretization based on short-characteristic upwinding techniques on unstructured, locally adapted grids with fast iterative solvers. The fully implicit treatment of the LBE leads to nonlinear systems which can be efficiently solved with the Newton method, even for a direct solution of the stationary LBE. With special exact preconditioning by the transport part due to the short-characteristic upwinding, we obtain an efficient linear solver for transport dominated configurations (macroscopic Stokes regime), while collision dominated cases (Navier-Stokes regime for larger Re numbers) are treated with a special block-diagonal preconditioning. Due to the new generalized equilibrium formulation (GEF) we can combine the advantages of both preconditioners, i.e. independence of the number of unknowns for convection-dominated cases with robustness for stiff configurations. We further improve the GEF approach by using hierarchical multigrid algorithms to obtain grid-independent convergence rates for a wide range of problem parameters, and provide representative results for various benchmark problems. Finally, we present quantitative comparisons between a highly optimized CFD-solver based on the Navier-Stokes equation (FeatFlow) and our new LBE solver (FeatLBE).

Keywords

Lattice Boltzmann equation Integro-differential equations Constant characteristics Upwind discretization Lower triangular matrices Krylov-methods Multigrid Monolithic solver 

AMS Subject Classification

35A25 65M06 76D05 76P05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bardow A., Karlin I.V., Gusev A.A.: General characteristic-based algorithm for off-lattice Boltzmann simulations. Europhys. Lett. 75(3), 434–440 (2006)CrossRefGoogle Scholar
  2. 2.
    Deo N.: Graph Theory with Applications to Engineering and Computer Science, pp. 222–333. Prentice Hall International, Englewood Cliffs, NJ (1974)zbMATHGoogle Scholar
  3. 3.
    d’Humières, D.: Generalized lattice-Boltzmann equations. In: Shizgal, B.D., Weaver, D.P. (eds.) Rarefied Gas Dynamics: Theory and Simulations, Prog Aeronaut Astronaut 159, pp. 450–458. (1992)Google Scholar
  4. 4.
    d’Humières D., Ginzburg I., Krafczyk M., Lallemand P., Luo L.-S.: Multiple-relaxation-time Lattice Boltzmann models in three-dimensions. Philos. Trans. R. Soc. Lond. 360, 437–451 (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    d’Humières D., Bouzidi M., Lallemand P.: Thirteen-velocity three-dimensional Lattice Boltzmann model. Phys. Rev. E 63, 066702 (2001)CrossRefGoogle Scholar
  6. 6.
    Düster A., Demkowicz L., Rank E.: High-order finite elements applied to the discrete Boltzmann equation. Int. J. Numer. Methods Eng. 67, 1094–1121 (2006)zbMATHCrossRefGoogle Scholar
  7. 7.
    Frisch U., d’Humières D., Hasslacher B., Lallemand P.: Lattice gas hydrodynamics in two and three dimensions. Complex Syst. 1, 75–136 (1987)Google Scholar
  8. 8.
    He X., Luo L.S.: Lattice Boltzmann model for the incompressible Navier-Stokes equation. J. Stat. Phys. 88, 927–944 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Guo Z., Zhao T.S.: Explicit finite-difference Lattice Boltzmann method for curvilinear coordinates. Phys. Rev. E 67, 066709 (2003)CrossRefGoogle Scholar
  10. 10.
    Hübner, T.: Spezielle Diskretisierungs- und Lösungsmethoden für Integro-Differentialgleichungen am Beispiel der Strahlungstransportgleichung. Diploma Thesis http://www.mathematik.uni-dortmund.de/lsiii/static/showpdffile_Huebner2005.pdf, Dortmund. (2005)
  11. 11.
    Hübner T., Turek S.: An efficient and accurate short-characterisctics solver for radiative transfer problems. Computing 81, 281–296 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hübner, T.: Monolithische Lösungsmethoden für die Lattice-Boltzmann Gleichung. PhD Thesis (2010, to appear)Google Scholar
  13. 13.
    Hübner, T., Turek, S.: Efficient monolithic Lattice Boltzmann solver for nonstationary flow problems. (2010, to appear)Google Scholar
  14. 14.
    Inamuro T., Yoshino M., Ogino F.: Accuracy of the Lattice Boltzmann method for small Knudsen number with finite Reynolds number. Phys. Fluids 9, 3535 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Junk, M.: LBM-discrete dynamics and finite difference method. In: Proceedings of the GAMM Workshop on Discrete Modelling and Discrete Algorithms in Continuum Mechanics. Logos, Berlin (2001)Google Scholar
  16. 16.
    Ladd A.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. J. Fluid Mech. 271, 285–309 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lallemand P., Luo L.S.: Theory of the Lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61(6), 6546–6562 (2000)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Mavriplis D.J.: Multigrid solution of the steady-state Lattice Boltzmann equation. Comput. Fluids 35, 573–591 (2006)CrossRefGoogle Scholar
  19. 19.
    Mei R., Yu D., Shyy W., Luo L.-S.: Force evaluation in the Lattice Boltzmann method involving curved geometry. Phys. Rev. E 65, 041203 (2002)CrossRefGoogle Scholar
  20. 20.
    Noble D., Holdych D.: Full Newton Lattice Boltzmann Method for Time-Steady Flows using a Direct Linear Solver. Int. J. Mod. Phys. C 18(4), 652–660 (2007)zbMATHCrossRefGoogle Scholar
  21. 21.
    Qian Y.H., d’Humières D., Lallemand P.: Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17, 479–484 (1992)zbMATHCrossRefGoogle Scholar
  22. 22.
    Reider M., Sterling J.: Accuracy of discrete velocity BGK models for the simulation of the incompressible Navier Stokes equations. Comput. Fluids 24, 459–467 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Saad Y., Schultz M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Schäfer M., Turek S.: Benchmark computations of laminar flow around cylinder. Notes Numer. Fluid Mech. 52, 547–566 (1996)Google Scholar
  25. 25.
    Tölke J., Krafczyk M., Rank E.: A multigrid-solver for the discrete boltzmann-equation. J. Stat. Phys. 107(1/2), 573–591 (2002)zbMATHCrossRefGoogle Scholar
  26. 26.
    Tölke J., Krafczyk M., Schulz M., Rank E., Berrios R.: Implicit discretization and non-uniform mesh refinement approaches for FD discretizations of LBGK Models. Int. J. Mod. Phys. C 9(8), 1143–1157 (1998)CrossRefGoogle Scholar
  27. 27.
    Turek, S.: FEATFLOW finite element software for the incompressible Navier-Stokes equations: User Manual (www.featflow.de). Release 1.2, University of Dortmund (2000)
  28. 28.
    Turek S.: A Generalized Mean Intensity Approach for the Numerical Solution of the Radiative Transfer Equation. Computing 54, 27–38 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Turek S., Ouazzi A.: Unified edge–oriented stabilization of nonconforming FEM for incompressible flow problems: numerical investigations. J. Numer. Math. 14(4), 299–322 (2007)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Van der Vorst H.: BI–CGSTAB: A fast and smoothly converging variant of BI–CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Wobker H., Turek S.: Numerical Studies of Vanka-type Smoothers in Computational Solid Mechanics. Adv. Appl. Math. Mech. 1, 29–55 (2009)MathSciNetGoogle Scholar
  32. 32.
    Zou Q., He X.: On pressure and velocity boundary conditions for the Lattice Boltzmann BGK model. Phys. Fluids 9(6), 1591–1598 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute for Applied MathematicsTU DortmundDortmundGermany

Personalised recommendations