Drawing polytopal graphs with polymake

  • Ewgenij Gawrilow
  • Michael Joswig
  • Thilo Rörig
  • Nikolaus Witte
Article

Abstract

This note wants to explain how to obtain meaningful pictures of (possibly high-dimensional) convex polytopes, triangulated manifolds, and other objects from the realm of geometric combinatorics such as tight spans of finite metric spaces and tropical polytopes. In all our cases we arrive at specific, geometrically motivated, graph drawing problems. The methods displayed are implemented in the software system polymake.

Keywords

Visualization Graphs Polytopes Schlegel diagrams Tight spans of finite metric spaces Tropical polytopes Simplicial manifolds 

Mathematics Subject Classification (2000)

68R10 05-04 05C10 52B11 

References

  1. 1.
    Balinski M.L.: On the graph structure of convex polyhedra in n-space. Pac. J. Math. 11, 431–434 (1961) MR MR0126765 (23 #A4059)MATHMathSciNetGoogle Scholar
  2. 2.
    Bandelt H.-J., Dress A.: Reconstructing the shape of a tree from observed dissimilarity data. Adv. Appl. Math. 7(3), 309–343 (1986) MR MR858908 (87k:05060)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Blind R., Mani-Levitska P.: Puzzles and polytope isomorphisms. Aequationes Math. 34(2–3), 287–297 (1987) MR MR921106 (89b:52008)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Block F., Yu J.: Tropical convexity via cellular resolutions. J. Algebraic Combin. 24(1), 103–114 (2006) MR MR2245783 (2007f:52041)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cremona, L.: Graphical statics. Oxford University Press (1890) (English trans: T.H. Beare)Google Scholar
  6. 6.
    Develin M., Sturmfels B.: Tropical convexity. Doc. Math. 9, 1–27 (2004) (electronic), correction: ibid., pp. 205–206. MR MR2054977 (2005i:52010)MATHMathSciNetGoogle Scholar
  7. 7.
    Eppstein, D.: Ukrainian easter egg. In: The geometry junkyard. computational and recreational geometry, 23 January 1997, http://www.ics.uci.edu/~eppstein/junkyard/ukraine/
  8. 8.
    Fruchtermann T., Reingold E.: Graph drawing by force-directed placement. Softw. Pract. Experience 21(11), 1129–1164 (1992)CrossRefGoogle Scholar
  9. 9.
    Gawrilow, E., Joswig, M.: polymake, version 2.3 (desert), 1997–2007, with contributions by T. Rörig and N. Witte, free software, http://www.math.tu-berlin.de/polymake
  10. 10.
    Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex polytopes, polytopes–combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, pp. 43–73. Birkhäuser, Basel MR 2001f:52033 (2000)Google Scholar
  11. 11.
    Gunn, C., Hoffmann, T., Schmies, M., Weißmann, S.: jReality, http://www.jreality.de (2007)
  12. 12.
    Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23(2), 254–267 (2006) www.splitstree.org Google Scholar
  13. 13.
    Isbell J.R.: Six theorems about injective metric spaces. Comment. Math. Helv. 39, 65–76 (1964) MR MR0182949 (32 #431)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Joswig, M.: Goldfarb’s cube (2000), http://www.eg-models.de, eg-model nr. 2000.09.030
  15. 15.
    Joswig, M.: Tropical halfspaces. Combinatorial and computational geometry. Math. Sci. Res. Inst. Publ. vol. 52, pp. 409–431. Cambridge University Press, Cambridge MR MR2178330 (2006g:52012) (2005)Google Scholar
  16. 16.
    Jünger, M., Mutzel, P. (eds.): Graph drawing software, mathematics and visualization. Springer, Berlin (2004) MR MR2159308Google Scholar
  17. 17.
    Kaibel V., Schwartz A.: On the complexity of polytope isomorphism problems. Graphs Combin. 19(2), 215–230 (2003) MR MR1996205 (2004e:05125)MATHMathSciNetGoogle Scholar
  18. 18.
    Klee, V., Minty, G.J.: How good is the simplex algorithm? Inequalities, III. In: Proceedings of the 3rd Symposium, University of California, Los Angeles, California, 1969; dedicated to the memory of Theodore S. Motzkin). Academic Press, New York (1972) pp. 159–175. MR MR0332165 (48 #10492)Google Scholar
  19. 19.
    Maxwell, J.C.: On reciprocal figures and diagrams of forces. Philosophical Magazine, 250–261, Ser. 4, 27 (1864)Google Scholar
  20. 20.
    Polthier, K., Hildebrandt, K., Preuss, E., Reitebuch, U.: JavaView, version 3.95, http://www.javaview.de (2007)
  21. 21.
    Richter-Gebert J.: Realization spaces of polytopes, vol 1643. Springer, Berlin (1996)Google Scholar
  22. 22.
    Rörig, T., Witte, N., Ziegler, G.M.: Zonotopes with large 2d cuts, (2007) arXiv:0710.3116v2Google Scholar
  23. 23.
    Schlegel V.: Theorie der zusammengesetzten Raumgebilde, vol. 44, Nova Acta, no. 4. Leopoldina, Halle (1883)Google Scholar
  24. 24.
    Steinitz, E.: Polyeder und Raumteilungen, Encyklopädie der mathematischen Wissenschaften. Dritter Band: Geometrie, III.1.2., Heft 9, Kapitel 3 A B 12, pp. 1–139 (1922)Google Scholar
  25. 25.
    Steinitz, E., Rademacher, H.: Vorlesungen über die Theorie der Polyeder unter Einschluss der Elemente der Topologie, Springer-Verlag, Berlin (1976) Reprint der 1934 Auflage, Grundlehren der Mathematischen Wissenschaften, No. 41. MR MR0430958 (55 #3962)Google Scholar
  26. 26.
    Sturmfels, B., Yu, J.: Classification of six-point metrics. Electron. J. Combin. 11(1), Research Paper 44, 16 (electronic) MR MR2097310 (2005m:51016) (2004)Google Scholar
  27. 27.
    Tollis, I.G., Battista, G.D., Eades, P., Tamassia, R.: Graph drawing. In: Algorithms for the visualization of graphs. Prentice Hall , Upper Saddle River MR MR2064104 (2005i:68067) (1999)Google Scholar
  28. 28.
    Tutte W.T.: How to draw a graph. Proc. Lond. Math. Soc. 13(3), 743–767 (1963)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Wagner, U. (ed.): Conference on Geometric and Topological Combinatorics, Problem Session. Oberwolfach Reports 4 (1), 265–267 (2006)Google Scholar
  30. 30.
    Wayne, B.M., Eppstein, D., Guibas, L.J., Hershberger, J.E., Suri, S., Wolter, J.D., The centroid of points with approximate weights. In: Spirakis, P.G. (ed.) Proceedings of the 3rd European Symposium Algorithms (ESA 1995), Lecture Notes in Computer Science, pp. 460–472. Springer, Berlin (1995)Google Scholar
  31. 31.
    Ziegler G.M.: Lectures on polytopes. Springer, Berlin (1995)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ewgenij Gawrilow
    • 1
  • Michael Joswig
    • 2
  • Thilo Rörig
    • 3
  • Nikolaus Witte
    • 3
  1. 1.Institut für Mathematik MA 5-1TU BerlinBerlinGermany
  2. 2.Institut für Mathematik AG 7TU DarmstadtDarmstadtGermany
  3. 3.Institut für Mathematik MA 6-2TU BerlinBerlinGermany

Personalised recommendations