Computing and Visualization in Science

, Volume 12, Issue 7, pp 329–336 | Cite as

Modelling and simulation of moving contact line problems with wetting effects

Regular article

Abstract

This paper presents a numerical scheme for computing moving contact line flows with wetting effects. The numerical scheme is based on Arbitrary Lagrangian Eulerian (ALE) finite elements on moving meshes. In the computations, the wetting effects are taken into account through a weak enforcement of the prescribed equilibrium contact angle into the model equations. The equilibrium contact angle is included in the variational form of the model by replacing the curvature with Laplace Beltrami operator and integration by parts. This weak implementation allows that the contact angle determined by the numerical scheme differs from the equilibrium value and develops a certain dynamics. The Laplace Beltrami operator technique with an interface/boundary resolved mesh is well-suited for describing the dynamic contact angle observed in experiments. We consider the spreading and the pendant liquid droplets to investigate this implementation of the contact angle. It is shown that the dynamic contact angle tends to the prescribed equilibrium contact angle when time goes to infinity. However, the dynamics of the contact angle is influenced by the slip at the moving contact line.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bänsch, E.: Numerical methods for the instationary Navier–Stokes equations with a free capillary surface. Habilitationsschrift, Albert-Ludwigs Universität (2001)Google Scholar
  2. 2.
    Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. R.A.I.R.O. Anal. Numér. 7, 33–76 (1973)MathSciNetGoogle Scholar
  3. 3.
    Dziuk, G.: An algorithm for evolutionary surfaces. Numer. Math. 58, 603–611 (1991)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Eggers, J., Stone, H.A.: Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle. J. Fluid Mech. 505, 309–321 (2004)MATHCrossRefGoogle Scholar
  5. 5.
    Fukai, J., Shiiba, Y., Yamamoto, T., Miyatake, O., Poulikakos, D., Megaridis, C.M., Zhao, Z.: Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modeling. Phys. Fluids 7(2), 236–247 (1995)CrossRefGoogle Scholar
  6. 6.
    Ganesan, S.: Finite element methods on moving meshes for free surface and interface flows. Ph.D. Thesis, Otto-von-Guericke-Universität, Fakultät für Mathematik, Magdeburg (2006)Google Scholar
  7. 7.
    Lauga, E., Brenner, P., Stone, H.A.: Microfluidics: the no-slip boundary condition. In: Foss, J., Tropea, C., Yarin, A.(eds) Handbook of Experimental Fluid Dynamics, Springer, New York (2007)Google Scholar
  8. 8.
    Matthies, G.: Finite element methods for free boundary value problems with capillary surfaces. Ph.D. Thesis, Otto-von-Guericke-Universität, Fakultät für Mathematik, Magdeburg (2002)Google Scholar
  9. 9.
    Renardy, M., Renardy, Y., Li, J.: Numerical simulation of moving contact line problems using a volume-of-fluid method. J. Comput. Phys. 171, 243–263 (2001)MATHCrossRefGoogle Scholar
  10. 10.
    Ruschak, K.: A method for incorporating free boundaries with surface tension in finite element fluid-flow simulators. Int. J. Numer. Meth. Eng. 15, 639–648 (1980)MATHCrossRefGoogle Scholar
  11. 11.
    Spelt, P.D.M.: A level-set approach for simulations of flows with multiple moving contact lines with hysteresis. J. Comput. Phys. 207, 389–404 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    S̆ikalo, S̆., Wilhelm, H.D., Roisman, I.V., Jakirlić, S., Tropea, C.: Dynamic contact angle of spreading droplets: experiments and simulations. Phys. Fluids 17(062103), 1–13 (2005)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für Analysis und NumerikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations