Advertisement

Computing and Visualization in Science

, Volume 12, Issue 6, pp 287–295 | Cite as

Combined evolution of level sets and B-spline curves for imaging

  • M. FuchsEmail author
  • B. Jüttler
  • O. Scherzer
  • H. Yang
Regular article
  • 91 Downloads

Abstract

We propose the evolution of curves in direction of their unit normal using a combined implicit and explicit spline representation according to a given velocity field. In the implicit case we evolve a level set function for segmentation and geometry reconstruction in 2D images. The level set approach allows for topological changes of the evolving curves. The evolution of the explicit B-spline curve is driven by the Mumford–Shah functional. We are mainly concerned with the segmentation of images using active contours. To get satisfactory results from the implicit evolution the optimal stopping time and the correct level of the evolving function has to be estimated. We overcome this problem by using the combined evolution.

Keywords

Active Contour Active Contour Model Spline Curve Pepper Noise Geodesic Active Contour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caselles, V., Catté, F., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66, 1–31 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comp. Vis. 22(1), 61–79 (1997)zbMATHCrossRefGoogle Scholar
  3. 3.
    Caselles, V., Kimmel, R., Sapiro, G., Sbert, C.: Minimal surfaces based object segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 19(4), 394–398 (1997)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Chan, T.F., Tai, X.-C.: Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comp. Phys. 193(1), 40–66 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Corsaro, S., Mikula, K., Sarti, A., Sgallari, F.: Semi-implicit covolume method in 3D image segmentation. SIAM J. Sci. Comput. 28(6), 2248–2265 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)CrossRefGoogle Scholar
  8. 8.
    Kühne, G., Weickert, J., Beier, M., Effelsberg, W.: Fast implicit active contour models. In: Pattern Recognition : 24th DAGM Symposium, Zurich, Switzerland, 16–18 September 2002. Proceedings, vol. 2449 of Lecture Notes in Computer Science, pp. 133–140. Springer, Berlin (2002)Google Scholar
  9. 9.
    Mikula, K., Sarti, A., Sgallari, F.: Co-volume method for Riemannian mean curvature flow in subjective surfaces multiscale segmentation. Comput. Vis. Sci. 9, 23–31 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Proceedings of IEEE Conference in Computer Vision Pattern Recognition, pp. 22–26 (1985)Google Scholar
  11. 11.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(4), 577–684 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on hamilton–jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Sarti, A., Malladi, R., Sethian, J.A.: Subjective surfaces: a geometric model for boundary completion. Int. J. Comput. Vis. 46(3), 201–221 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Yang, H., Fuchs, M., Jüttler, B., Scherzer, O.: Evolution of t-spline level sets with distance field constraints for geometry reconstruction and image segmentation. In: IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06), pp. 247–252, Los Alamitos, CA, USA, 2006. IEEE Computer Society, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Computer ScienceLeopold-Franzens-UniversitätInnsbruckAustria
  2. 2.Institute of Applied GeometryJohannes-Kepler-UniversitätLinzAustria

Personalised recommendations