Composite finite elements for 3D image based computing
- 205 Downloads
- 30 Citations
Abstract
We present an algorithmical concept for modeling and simulation with partial differential equations (PDEs) in image based computing where the computational geometry is defined through previously segmented image data. Such problems occur in applications from biology and medicine where the underlying image data has been acquired through, e.g. computed tomography (CT), magnetic resonance imaging (MRI) or electron microscopy (EM). Based on a level-set description of the computational domain, our approach is capable of automatically providing suitable composite finite element functions that resolve the complicated shapes in the medical/biological data set. It is efficient in the sense that the traversal of the grid (and thus assembling matrices for finite element computations) inherits the efficiency of uniform grids away from complicated structures. The method’s efficiency heavily depends on precomputed lookup tables in the vicinity of the domain boundary or interface. A suitable multigrid method is used for an efficient solution of the systems of equations resulting from the composite finite element discretization. The paper focuses on both algorithmical and implementational details. Scalar and vector valued model problems as well as real applications underline the usability of our approach.
Keywords
Coarse Grid Lookup Table Multigrid Method Virtual Node Regular NodePreview
Unable to display preview. Download preview PDF.
References
- 1.Adams, L., Li, Z.: The immersed interface/multigrid methods for interface problems. SIAM J. Sci. Comput. 24(2), 463–479 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
- 2.Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems. Boll. dell’Unione Matematica Ital. B 6(7), 105–123 (1992)zbMATHMathSciNetGoogle Scholar
- 3.Babuška, I., Melenk, J.: The partition of unity method. Int. J. Numer. Methods Eng. 40, 727–758 (1997)zbMATHCrossRefGoogle Scholar
- 4.Belytschko, T., Moës, N., Usui, S., Parimi, C.: Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50(4), 993–1013 (2001)zbMATHCrossRefGoogle Scholar
- 5.Beyer, R.P., LeVeque, R.J.: Analysis of a one-dimensional model for the immersed boundary method. SIAM J. Numer. Anal. 29(2), 332–364 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
- 6.Bornemann, F., Rasch, C.: Finite-element discretization of static Hamilton–Jacobi equations based on a local variation principle. Comput. Vis. Sci. 9(2), 57–69 (2004) arXiv:math.NA/0403517Google Scholar
- 7.Calhoun, D.: A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. J. Comput. Phys. 176, 231–275 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
- 8.Calhoun, D., LeVeque, R.J.: A Cartesian grid finite-volume method for the advection-diffusion equation in irregular geometries. J. Comput. Phys. 157, 143–180 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
- 9.Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66, 1–31 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
- 10.Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)zbMATHCrossRefGoogle Scholar
- 11.Chan, T., Vese, L.: A level set algorithm for minimizing the Mumford–Shah functional in image processing. In: Proceedings of the 1st IEEE Workshop on Variational and Level Set Methods in Computer Vision, pp. 161–168 (2001)Google Scholar
- 12.Cheng, S.-W., Dey, T.K., Edelsbrunner, H., Facello, M.A., Teng, S.-H.: Sliver exudation. J. ACM 47(5), 883–904 (2000)CrossRefMathSciNetGoogle Scholar
- 13.Ciarlet, P.G.: The finite element method for elliptic problems. Number 40 in Classics in applied mathematics. SIAM (2002)Google Scholar
- 14.Cremers, D., Schnörr, C., Weickert, J.: Diffusion-snakes: combining statistical shape knowledge and image information in a variational framework. IEEE Workshop on Variational and Levelset Methods, pp. 137–144 (2001)Google Scholar
- 15.Deuflhard, P., Weiser, M., Seebaß, M.: A new nonlinear elliptic multilevel FEM applied to regional hyperthermia. Comput. Vis. Sci. 3(3), 115–120 (2000)zbMATHCrossRefGoogle Scholar
- 16.Droske, M., Preusser, T., Rumpf, M.: A multilevel segmentation method. In: Proceedings of Vision, Modeling and Visualization (VMV), pp. 327–336. Saarbrücken, Germany (2000)Google Scholar
- 17.Frauböse, N., Sauter, S.: Composite finite elements and multi-grid. Part I: Convergence theory in 1-d. In: Proceedings of the 17th GAMM-Seminar Leipzig on Construction of Grid Generation Algorithms, pp. 69–86 (2001)Google Scholar
- 18.Goméz-Benito, M., García-Aznar, J., Doblaré, M.: Finite element prediction of proximal femoral fracture patterns under different loads. J. Biomech. Eng. 127(1), 9–14 (2005)CrossRefGoogle Scholar
- 19.Hackbusch, W.: Multi-Grid Methods and Applications. Springer Series in Computational Mathematics, vol. 4. Springer, Heidelberg (1985)Google Scholar
- 20.Hackbusch, W., Sauter, S.: Composite finite elements for the approximation of PDEs on domains with complicated micro-structures. Numerische Mathematik 75, 447–472 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
- 21.Hahn, H.K., Lentschig, M.G., Deimling, M., Terwey, B., Peitgen, H.-O.: MRI-based volumetry of intra- and extracerebral liquor spaces. In: CARS, pp. 401–407 (2001)Google Scholar
- 22.Höllig, K., Reif, U., Wipper, J.: Weighted extended B-spline approximation of Dirichlet problems. SIAM J. Numer. Anal. 39(2), 442–462 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
- 23.Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)CrossRefGoogle Scholar
- 24.Kornhuber, R., Krause, R., Sander, O., Deuflhard, P., Ertel, S.: A monotone multigrid solver for two body contact problems in biomechanics. Comput. Vis. Sci. 11(1), 3–15 (2008)Google Scholar
- 25.Kröger, T., Altrogge, I., Preusser, T., et al.: Numerical simulation of radio frequency ablation with state dependent material parameters in three space dimensions. In: MICCAI 2006. Lecture Notes in Computer Science, vol. 4191, pp. 380–388. Springer, Heidelberg (2006)Google Scholar
- 26.Kuhnigk, J.M., Dicken, V., Bornemann, L., Bakai, A., Wormanns, D., Krass, S., Peitgen, H.O.: Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans. Med. Imaging 25(4), 417–434 (2006)CrossRefGoogle Scholar
- 27.LeVeque, R.J., Li, Z.L.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
- 28.Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal. 35(1), 230–254 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
- 29.Li, Z.: The immersed interface method using a finite element formulation. Appl. Numer. Math. 27, 253–267 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
- 30.Li, Z., Lin, T., Wu, X.: New Cartesian grid methods for interface problems using the finite element formulation. Numerische Mathematik 1996(1), 61–98 (2003)CrossRefMathSciNetGoogle Scholar
- 31.Lorensen, W.E., Cline, H.E.: Marching cube: a high resolution 3D surface construction algorithm. Comput. Graph. 21(4), 163–169 (1987)Google Scholar
- 32.Melenk, J.M., Babuška, I.: The partition of unity finite element method. Research Report 96-01, Eidgenössische Technische Hochschule Zürich, Seminar für angewandte Mathematik (1996)Google Scholar
- 33.Müller, H., Wehle, M.: Visualization of implicit surfaces using adaptive tetrahedrizations. In: Proceedings of Scientific Visualization Conference (Dagstuhl ’97) (1997)Google Scholar
- 34.Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
- 35.Parvizian, J., Düster, A., Rank, E.: Finite cell method. Comput. Mech. 41(1), 121–133 (2007)CrossRefMathSciNetGoogle Scholar
- 36.Preusser, T., Rumpf, M.: An adaptive finite element method for large scale image processing. J. Vis Commun. Image Representation 11, 183–195 (2000)CrossRefGoogle Scholar
- 37.Preusser, T., Rumpf, M., Sauter, S., Schwen, L.O., et al.: Three-dimensional composite finite elements for scalar problems with jumping coefficients. In preparation (2007)Google Scholar
- 38.Preusser, T., Rumpf, M., Schwen, L.O.: Finite element simulation of bone microstructures. In: Proceedings of the 14th Finite Element Workshop. University of Ulm (2007, to appear)Google Scholar
- 39.Rech, M., Sauter, S., Smolianski, A.: Two-scale composite finite element method for the Dirichlet problem on complicated domains. Numerische Mathematik 102, 681–708 (2006)Google Scholar
- 40.Russo, G., Smereka, P.: A remark on computing distance functions. J. Comput. Phys. 163(1), 51–67 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
- 41.Sauter, S.A., Warnke, R.: Composite finite elements for elliptic boundary value problems with discontinuous coefficients. Computing 77, 29–55 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
- 42.Schenk, A., Prause, G., Peitgen, H.-O.: Efficient semiautomatic segmentation of 3D objects in medical images. In: Proceedings of MICCAI. Lecture Notes in Computer Science, vol. 1935, pp. 186–195. Springer, Heidelberg (2000)Google Scholar
- 43.Schwen, L.O., et al.: Computing elastic deformation of vertebrae using composite finite elements. In preparation (2007)Google Scholar
- 44.Segonne, F., Dale, A.M., Busa, E., Glessner, M., Salat, D., Hahn, H.K., Fischl, B.: A hybrid approach to the skull stripping problem in MRI. Neuroimage 22(3), 1060–1075 (2004)CrossRefGoogle Scholar
- 45.Sethian, J.A., Wiegmann, A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163(2), 489–528 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
- 46.Stazi, F.L., Budyn, E., Chessa, J., Belytschko, T.: An extended finite element method with higher-order elements for curved cracks. Comput. Mech. 31, 38–48 (2003)zbMATHCrossRefGoogle Scholar
- 47.Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Wellesley-Cambridge Press, Wellesley (1973)zbMATHGoogle Scholar
- 48.Strouboulis, T., Copps, K., Babuška, I.: The generalized finite element method. Comput. Methods Appl. Mech. Eng. 190, 4081–4193 (2001)zbMATHCrossRefGoogle Scholar
- 49.Teng, S.-H., Wong, C.W.: Unstructured mesh generation: theory, practice and applications. Int. J. Comput. Geometry Appl. 10(3), 227–266 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
- 50.Wiegmann, A., Bube, K.P.: The immersed interface method for nonlinear differential equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 35(1), 177–200 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
- 51.Wittek, A., Kikinis, R., Warfield, S.K., Brain, M.K.: Shift computation using a fully nonlinear biomechanical model. In: Proceedings of MICCAI, LNCS, pp. 583–590. Springer, Heidelberg (2005)Google Scholar
- 52.Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Proces. 7(3), 359–369 (1998)zbMATHCrossRefMathSciNetGoogle Scholar