Computing and Visualization in Science

, Volume 12, Issue 5, pp 247–263 | Cite as

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids

Regular article

Abstract

In this paper we will present an algorithm to perform free surface flow simulations with the lattice Boltzmann method on adaptive grids. This reduces the required computational time by more than a factor of three for simulations with large volumes of fluid. To achieve this, the simulation of large fluid regions is performed with coarser grid resolutions. We have developed a set of rules to dynamically adapt the coarse regions to the movement of the free surface, while ensuring the consistency of all grids. Furthermore, the free surface treatment is combined with a Smagorinsky turbulence model and a technique for adaptive time steps to ensure stable simulations. The method is validated by comparing the position of the free surface with an uncoarsened simulation. It yields speedup factors of up to 3.85 for a simulation with a resolution of 4803 cells and three coarser grid levels, and thus enables efficient and stable simulations of free surface flows, e.g. for highly detailed physically based animations of fluids.

Keywords

Free surface flows Physically based animation Adaptive grids Lattice Boltzmann method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bastian, P., Birken, K., Lang, S., Johannsen, K., Neuß, N., Rentz-Reichert, H., Wieners, C.: UG: A flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1, 27–40 (1997)CrossRefMATHGoogle Scholar
  2. 2.
    Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. Phys. Rev. 94, 511–525 (1954)CrossRefMATHGoogle Scholar
  3. 3.
    Bouzidi, M., Firadouss, M., Lallemand, P.: Momentum transfer of a lattice-boltzmann fluid with boundaries. Phys. Fluids 13, 3452–3459 (2002)CrossRefGoogle Scholar
  4. 4.
    Buwa, V.V., Deo, D.S., Ranade, V.V.: Eulerian–Lagrangian simulations of unsteady gas–liquid flows in bubble Columns. Int. J. Multiphase Flow (2005)Google Scholar
  5. 5.
    Causin, P., Miglio, E., Saleri, F.: Algebraic factorizations for 3D non-hydrostatic free surface flows. Comput. Vis. Sci. 5(2), 85–94 (2002)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Chu, N.S.H., Tai, C.L.: MoXi: real-time ink dispersion in absorbent paper. ACM Trans. Graph. 24(3), 504–511 (2005)CrossRefGoogle Scholar
  7. 7.
    Crouse, B., Krafcyzk, M., Tölke, J., Rank, E.: A LB-based approach for adaptive flow simulations. Int. J. Modern Phys. B 17, 109–112 (2003)CrossRefGoogle Scholar
  8. 8.
    Filippova, O., Hänel, D.: Grid refinement for lattice-BGK models. J. Comp. Phys. 147, 219–228 (1998)CrossRefMATHGoogle Scholar
  9. 9.
    Frisch, U., d’Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y., Rivert, J.P.: Lattice gas hydrodynamics in two and three dimensions. Complex Syst. 1, 649–707 (1987)MATHGoogle Scholar
  10. 10.
    Geist, R., Rasche, K., Westall, J., Schalkoff, R.: Lattice-Boltzmann Lighting. In: Proceedings of Eurographics Symposium on Rendering 2004, pp. 355–362 (2004)Google Scholar
  11. 11.
    Geller, S., Krafczyk, M., Tölke, J., Turek, S., Hron, J.: Benchmark computations based on Lattice-Boltzmann, Finite Element and Finite Volume Methods for laminar Flows. Comput. Fluids 35, 8–9 (2006)CrossRefGoogle Scholar
  12. 12.
    Ginzburg, I., d’Humières, D.: Multi-reflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 68:066614-1-30 (2003)Google Scholar
  13. 13.
    Ginzburg, I., Steiner, K.: Lattice Boltzmann model for free-surface flow and its application to filling process in casting. J. Comp. Phys. 185/1 (2003)Google Scholar
  14. 14.
    Gunstensen, A.K., Rothman, D.H., Zaleski, S., Zanetti, G.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43 (1991)Google Scholar
  15. 15.
    He, X., Luo, L.S.: A priori derivation of lattice Boltzmann equation. Phys. Rev. E 55, R6333–R6336 (1997)CrossRefGoogle Scholar
  16. 16.
    He, X., Luo, L.S.: Lattice Boltzmann model for the incompressible Navier–Stokes equations. J. Stat. Phys. 88, 927–944 (1997)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys. 39, 201–225 (1981)CrossRefMATHGoogle Scholar
  18. 18.
    Hou, S., Sterling, J.D., Chen, S., Doolen, G.: A lattice Boltzmann subgrid model for high Reynolds number flow. Fields Inst. Commun. 6, 151–166 (1996)MathSciNetGoogle Scholar
  19. 19.
    Inamuro, T., Ogata, T., Tajima, S., Konishi, N.: A lattice boltzmann method for incompressible two-phase flows with large density differences. J. Comp. Phys. 198, 628–644 (2004)CrossRefMATHGoogle Scholar
  20. 20.
    Körner, C., Pohl, T., Rüde, U., Thürey, N., Zeiser, T.: Parallel lattice Boltzmann methods for CFD applications. In: Bruaset, A., Tveito, A. (eds.) Numerical Solution of Partial Differential Equations on Parallel Computers, LNCSE, vol. 51, pp. 439–465. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Körner, C., Singer, R.: Numerical Simulation of Foam Formation and Evolution with Modified Cellular Automata. Metal Foams and Porous Metal Structures, pp. 91–96 (1999)Google Scholar
  22. 22.
    Körner, C., Thies, M., Hofmann, T., Thürey, N., Rüde, U.: Lattice Boltzmann model for free surface flow for modeling foaming. J. Stat. Phys. 121(1-2), 179–196 (2005)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Körner, C., Thies, M., Singer, R.F.: Modeling of metal foaming with lattice Boltzmann automata. Adv. Eng. Mater. (2002)Google Scholar
  24. 24.
    Krafczyk, M.: Gitter–Boltzmann-Methoden, von der Theorie zur Anwendung. Habilitation (2001)Google Scholar
  25. 25.
    Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61(6), 6546–6562 (2000)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23(3), 457–462 (2004)CrossRefGoogle Scholar
  27. 27.
    Krafczyk, M., Tölke, J., Rank, E., Schulz, M.: Two-dimensional simulation of fluid-structure interaction using lattice-Boltzmann methods. Comput. Struct. 79 (2001)Google Scholar
  28. 28.
    Mei, R., Luo, L.S., Shyy, W.: An accurate curved boundary treatment in the lattice Boltzmann method. J. Comp. Phys. 155, 307–330 (1999)CrossRefMATHGoogle Scholar
  29. 29.
    Monaghan, J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Phys. 30, 543–574 (1992)CrossRefGoogle Scholar
  30. 30.
    Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer animation, pp. 154–159 (2003)Google Scholar
  31. 31.
    Pohl, T., Kowarschik, M., Wilke, J., Iglberger, K., Rüde, U.: Optimization and Profiling of the Cache Performance of Parallel Lattice Boltzmann Codes in 2D and 3D. Technical Report 3–8, Germany (2003)Google Scholar
  32. 32.
    Pohl, T., Thürey, N., Deserno, F., Rüde, U., Lammers, P., Wellein, G., Zeiser, T.: Performance evaluation of parallel large-scale lattice Boltzmann applications on three supercomputing architectures. In: Proceedings of supercomputing conference 2004 (2004)Google Scholar
  33. 33.
    Qian, Y.H., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17(6), 479–484 (1992)CrossRefMATHGoogle Scholar
  34. 34.
    Rohde, M., Kandhai, D., Derksen, J.J., van den Akker, H.E.A.: A generic mass conservative local grid refinement technique for lattice-Boltzmann schemes. Int. J. Num. Methods Fluids 51, 439 (2006)CrossRefMATHGoogle Scholar
  35. 35.
    Shan, X., Chen, H.: Simulation of non-ideal gases and liquid–gas phase transitiions by the lattice Boltzmann equation. Phys. Rev. E 49, 2941–2948 (1994)CrossRefGoogle Scholar
  36. 36.
    Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Wea. Rev. 91, 99–164 (1963)CrossRefGoogle Scholar
  37. 37.
    Stam, J.: Stable Fluids. In: Proceedings of ACM SIGGRAPH, pp. 121–128 (1999)Google Scholar
  38. 38.
    Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)MATHGoogle Scholar
  39. 39.
    Sussman, M.: A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comp. Phys. 187/1 (2003)Google Scholar
  40. 40.
    Swift, M.R., Orlandi, E., Osborn, W.R., Yeomans, J.M.: Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys. Rev. E 54, 5041–5052 (1996)CrossRefGoogle Scholar
  41. 41.
    Thuerey, N.: A lattice Boltzmann method for single-phase free surface flows in 3D. Masters Thesis, Department of Computer Science 10, System-Simulation, University of Erlangen-Nuremberg (2003)Google Scholar
  42. 42.
    Thürey, N., Rüde, U.: Webpage: stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids. http://www10.informatik.uni-erlangen.de/~sinithue/sfsflbmacg/
  43. 43.
    Thürey, N., Körner, C., Rüde, U.: Interactive free surface fluids with the lattice Boltzmann method, Technical Report 05–4. Technical Report, Department of Computer Science 10, System Simulation (2005)Google Scholar
  44. 44.
    Thürey, N., Pohl, T., Rüde, U., Oechsner, M., Körner, C.: Optimization and stabilization of LBM free surface flow simulations using adaptive parameterization. Comput. Fluids 35(8–9), 934–939 (2006)CrossRefGoogle Scholar
  45. 45.
    Tölke, J., Freudiger, S., Krafcyzk, M.: An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations. Comput. Fluids 17, 109–112 (2003)Google Scholar
  46. 46.
    Tölke, J., Krafcyzk, M., Schulz, M., Rank, E.: Lattice Boltzmann simulations of binary fluid flow through porous media. Philos. Trans. R. Soc. Lond. A 360, 535–545 (2002)CrossRefMATHGoogle Scholar
  47. 47.
    Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, London (2001)MATHGoogle Scholar
  48. 48.
    Veldhuizen, B., Langlotz, J., et al.: Blender open source 3D graphics creation (2005) http://www.blender3d.org
  49. 49.
    Verberg, R., Ladd, A.J.C.: Accuracy and stability of a lattice-boltzmann model with subgrid scale boundary conditions. Phys. Rev. E 65(016701-1-6) (2001)Google Scholar
  50. 50.
    Wang, C., Wang, Z., Xia, T., Peng, Q.: Real-time snowing simulation. The Visual Computer, pp. 315–323 (2006)Google Scholar
  51. 51.
    Wei, X., Li, W., M"uller, K., Kaufman, A.E.: The lattice-Boltzmann method for simulating gaseous phenomena. IEEE Trans. Vis. Comput. Graph. 10(2), 164–176 (2004)CrossRefGoogle Scholar
  52. 52.
    Wei, X., Zhao, Y., Fan, Z., Li, W., Yoakum-Stover, S., Kaufman, A.: Natural phenomena: blowing in the wind. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation, pp. 75–85 (2003)Google Scholar
  53. 53.
    Wittum, G.: Multi-grid methods for Stokes and Navier–Stokes equations with transforming smoothers: algorithms and numerical results. Numer. Math. 54, 543–563 (1989)CrossRefMathSciNetGoogle Scholar
  54. 54.
    Yu, D., Mei, R., Luo, L.S., Shyy, W.: Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerospace Sci. 39(5) (2003)Google Scholar
  55. 55.
    Yu, D., Mei, R., Shyy, W.: A multi-block lattice Boltzmann method for viscous fluid flows. Int. J. Numer. Methods Fluids 39 (2002)Google Scholar
  56. 56.
    Yu, H., Girimaji, S., Luo, L.S.: Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence. Phys. Rev. E 71 (2005)Google Scholar
  57. 57.
    Yu, H., Luo, L.S., Girimaji, S.: LES of turbulent square jet flow using an MRT lattice Boltzmann model. Comput. Fluids 25, 957–965 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Computer Science 10 - System Simulation (LSS)University of Erlangen-NurembergErlangenGermany

Personalised recommendations