Computing and Visualization in Science

, Volume 12, Issue 3, pp 101–114 | Cite as

Mumford–Shah based registration: a comparison of a level set and a phase field approach

  • Marc DroskeEmail author
  • Wolfgang Ring
  • Martin Rumpf
Regular Article


Traditionally, different image processing tasks are mainly considered on their own. The main aim of this paper is a combination of registration, i.e., the spatial alignment of images and egmentation, i.e., the recognition of edges and object contours in images. A proper registration depends on a good initial segmentation and vice versa. In this paper, it is proposed to link these problems together by formulating a coupled variational problem. We will focus on an edge-based approach instead of considering image intensities and propose a variational formulation based on the Mumford–Shah free discontinuity problem. This paper is particularly devoted to a comparison of a sharp interface approach with the phase field analogue.


Image Segmentation Sharp Interface Template Image Geodesic Active Contour Shape Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez, L., Snchez, J., Deriche, R., Weickert, J.: Dense disparity map estimation respecting image discontinuities: a pde and scale-space based approach. IAPR Workshop on Machine Vision no. 28–30, pp. 423–427 (2000)Google Scholar
  2. 2.
    Ambrosio, L., Faina, L., March, R.: Variational approximation of a second order free discontinuity problem in computer vision. SIAM J. Math. Anal. 32(6), 1171–1197 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation And Free Discontinuity Problems. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  4. 4.
    Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43, 999–1036 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 6(7), 105–123 (1992)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Ball, J.: Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edin. 88, 315–328 (1988)Google Scholar
  7. 7.
    Belletini, G., Coscia, A.: Discrete approximation of a free discontinuity problem. Numer. Funct. Anal. Optim. 15, 201–224 (1994)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bonnet, A.: On the regularity of the edge set of Mumford–Shah minimizers. Prog. Nonlinear Diff. Equ. Appl. 25, 93–103 (1996)MathSciNetGoogle Scholar
  9. 9.
    Bornemann, F., Rasch, C.: Finite-Element discretization of static Hamilton–Jacobi equations based on a local variation principle. (2004). See
  10. 10.
    Bourdin, B.: Image segmentation with a Finite Element method. ESIAM: Math. Modell. Numer. Anal. 33(2), 229–244 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bourdin, B., Chambolle, A.: Implementation of a Finite-Element approximation of the Mumford–Shah functional. Numer. Math. 85(4), 609–646 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Braides, A.: Approximation Of Free Discontinuity Problems. Lecture Notes in Mathematics, vol. 1694. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Brook, A., Kimmel, R., Sochen, N.A.: Variation restoration and edge detection for color images. J. Math. Image Vis. 18, 247–268 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Burger, M.: A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces Free Bound. 5, 301–329 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Burger, M.: Levenberg-Marquardt level set methods for inverse obstacle problems. Inv. Prob. 20, 259–282 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Burger, M., Hackl, B., Ring, W.: Incorporating topological derivatives into level set methods. J. Comput. Phys. 194, 344–362 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66, 1–31 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)zbMATHCrossRefGoogle Scholar
  19. 19.
    Chambolle, A.: Image segmentation by variatonal methods: Mumford–Shah functional and the discrete approximations. SIAM J. Appl. Math. 55(3), 827–863 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Chan, T.F., Vese, L.A.: Image segmentation using level sets and the piecewise constant Mumford–Shah model. UCLA CAM Report 00–14, University of California, Los Angeles (2000)Google Scholar
  21. 21.
    Chan, T.F., Vese, L.A.: A level set algorithm for minimizing the Mumford–Shah functional in image processing. UCLA CAM Report 00–13, University of California, Los Angeles (2000)Google Scholar
  22. 22.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  23. 23.
    Ciarlet, P.G.: Three-Dimensional Elasticity. Elsevier, New York (1988)zbMATHGoogle Scholar
  24. 24.
    Clarenz, U., Droske, M., Rumpf, M.: Towards fast non-rigid registration. In: Inverse Problems, Image Analysis and Medical Imaging. AMS Special Session Interaction of Inverse Problems and Image Analysis, vol. 313, pp. 67–84. AMS, New York (2002)Google Scholar
  25. 25.
    Clarenz, U., Henn, S., Rumpf M., Witsch, K.: Relations between optimization and gradient flow methods with applications to image registration. In: Proceedings of the 18th GAMM Seminar Leipzig on Multigrid and Related Methods for Optimisation Problems, pp. 11–30 (2002)Google Scholar
  26. 26.
    Cremers, D., Kohlberger, T., Schnörr, C.: Nonlinear shape statistics in Mumford–Shah based segmentation. In: Heyden, A. et al. (eds) European Conference on Computer Vision (ECCV), Copenhagen, vol. 2351, pp. 93–108. Springer LNCS, Heidelberg (2002)Google Scholar
  27. 27.
    Cremers, D., Soatto, S.: Motion competition: a variational framework for piecewise parametric motion segmentation. Int. J. Comput. Vis. 62(3), 249–265 (2005)CrossRefGoogle Scholar
  28. 28.
    Cremers, D., Tischhäuser, F., Weickert, J., Schnörr, C.: Diffusion snakes: introducing statistical shape knowledge into the Mumford–Shah functional. Int. J. Comput. Vis. 50(3), 1364–1379 (2002)CrossRefGoogle Scholar
  29. 29.
    Dacorogna, B.: Direct Methods in the Calculus of Variations. Appl. Math. Sciences, vol. 78. Springer, Berlin (1989)Google Scholar
  30. 30.
    Dal Maso, G., Morel, J., Solimini, S.: A variational method in image segmentation: existence and approximation results. Acta Math. 168, 89–151 (1996)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Davatzikos, C.A., Bryan, R.N., Prince, J.L.: Image registration based on boundary mapping. IEEE Trans. Med. Image 15(1), 112–115 (1996)CrossRefGoogle Scholar
  32. 32.
    De Giorgi, E., Carriero, M., Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Rat. Mech. Anal. 108, 195–218 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Delfour, M.C., Zolésio, J.: Geometries and Shapes: Analysis, Differential Calculus and Optimization. Adv. Des. Control 4. SIAM, Philadelphia (2001)Google Scholar
  34. 34.
    Dibos, F., Séré: An approximation result for the minimizers of the Mumford–Shah functional. Boll. Un. Math. Ital. 11A(1), (1997)Google Scholar
  35. 35.
    Droske, M.: On variational problems and gradient flows in image processing. Ph.D. thesis, Universität Duisburg-Essen (2005)Google Scholar
  36. 36.
    Droske, M., Ring, W.: A Mumford–Shah level-set approach for geometric image registration. SIAM J. Appl. Math. 66(6), 2127–2148 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Droske, M., Rumpf, M.: Multi scale joint segmentation and registration of image morphology. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2181–2194 (2007)CrossRefGoogle Scholar
  38. 38.
    Droske, M., Rumpf, M.: A variational approach to non-rigid morphological registration. SIAM Appl. Math. 64(2), 668–687 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)zbMATHGoogle Scholar
  40. 40.
    Feng, X., Prohl, A.: Analysis of gradient flow of a regularized Mumford–Shah functional for image segmentation and image inpainting. Math. Modell. Numer. Anal. (1999)Google Scholar
  41. 41.
    Féron, O., Mohammad-Djafari, A.: Image fusion and unsupervised joint segmentation using a hmm and mcmc algorithms. J. Electron. Image 14(2) (2005)Google Scholar
  42. 42.
    Fried, M.: Image segmentation using adaptive finite elements. Technical Report, University of Canberra, Australia (2003)Google Scholar
  43. 43.
    Grenander, U., Miller, M.I.: Computational anatomy: an emerging discipline. Q. Appl. Math. LVI(4), 617–694 (1998)MathSciNetGoogle Scholar
  44. 44.
    Hackbusch, W.: Multigrid Methods and Applications. Springer, Berlin (1985)Google Scholar
  45. 45.
    Hackbusch, W., Sauter, S.: Composite finite elements for the approximation of pdes on domains with complicated micro-structures. Numer. Math. 75, 447–472 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Henn, S.: A Levenberg–Marquardt scheme for nonlinear image registration. BIT Numer. Math. 43(4), 743–759 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Hintermüller, M., Ring, W.: A second order shape optimization approach for image segmentation. SIAM Appl. Math. 64(2), 442–467 (2003)zbMATHCrossRefGoogle Scholar
  48. 48.
    Hintermüller, M., Ring, W.: An inexact Newton-cg-type active contour approach for the minimization of the Mumford–Shah functional. J. Math. Image Vis. 20, 19–42 (2004)CrossRefGoogle Scholar
  49. 49.
    Höllig, K., Reif, U., Wipper, J.: Weighted extended b-spline approximation of dirichlet problems. SIAM J. Numer. Anal. 39(2), 442–462 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Joshi, S.C., Miller, M.I.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Med. Image 9(8), 1357–1370 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Kapur, T., Yezzi, L., Zöllei, L.: A variational framework for joint segmentation and registration. IEEE CVPR-MMBIA (2001)Google Scholar
  52. 52.
    Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Applied Mathematical Sciences, vol. 120. Springer, New York (1996)Google Scholar
  53. 53.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multi-modal volume registration by maximization of mutual information. IEEE Trans. Med. Image 16(7), 187–198 (1997)CrossRefGoogle Scholar
  54. 54.
    Mikula, K., Sarti, A., Sgallari, F.: Handbook of medical image analysis: segmentation and registration models. In: Suri, J. et al. (eds) Co-volume level set method in subjective surface based medical image segmentation, Kluwer Academic/Plenum Publishers, New York (2004)Google Scholar
  55. 55.
    Miller, M., Trouve, A., Younes, L.: On the metrics and Euler–Lagrange equations of computational anatomy. Annu. Rev. Biomed. Eng. 4, 375–405 (2002, in press)Google Scholar
  56. 56.
    Modersitzki, J., Fischer, B.: Fast diffusion registration. Special Issue of Contemporary Mathematics, AMS, New York (2000)Google Scholar
  57. 57.
    Modersitzki, J., Fischer, B.: Curvature based image registration. JMIV 18(1) (2003)Google Scholar
  58. 58.
    Morel, J., Solimini, S.: Variational models in image segmentation. Birkäuser, Basel (1994)Google Scholar
  59. 59.
    Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Heidelberg (2002)Google Scholar
  61. 61.
    Osher, S.J., Paragios, N.: Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  62. 62.
    Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Richardson, T.J., Mitter, S.K.: A variational formulation based edge focussing algorithm. Sadhana Acad. P. Eng. S. 22(4), 553–574 (1997)zbMATHMathSciNetGoogle Scholar
  64. 64.
    Sauter, S., Stahn, N.: Composite finite elements and multi-grid. part i: Convergence theory in 1-d. Technical Report, Preprint, 11-01, University of Zürich (2001)Google Scholar
  65. 65.
    Sethian, J.A.: Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge University Press, Cambridge (1996)Google Scholar
  66. 66.
    Sokołowski, J., Zolésio, J.P.: Introduction to shape optimization. In: Shape Sensitivity Analysis. Springer, Berlin (1992)Google Scholar
  67. 67.
    Thirion, J.P.: Image matching as a diffusion process: an analogy with maxwell’s demon. Med. Image Anal. 2, 243–260 (1998)CrossRefGoogle Scholar
  68. 68.
    Tsai, A., Yezzi, A., Willsky, A.: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)zbMATHCrossRefGoogle Scholar
  69. 69.
    Unal, G., Slabaugh, G.: Coupled PDEs for non-rigid registration and segmentation. In: IEEE Computer Society International Conference on Computer Vision and Pattern Recognition (CVPR) (2005)Google Scholar
  70. 70.
    Vemuri, B., Ye, J., Chen, Y., Leonard, C.: Image registration via level-set motion: applications to atlas-based segmentation. Med. Image Anal. 7, 1–20 (2003)CrossRefGoogle Scholar
  71. 71.
    Viola, P.A., Wells III, W.: Alignment by maximization of mutual information. Technical Report. AITR-1548 (1995)Google Scholar
  72. 72.
    Warnke, R.: Schnelle Löser für elliptische Randwertprobleme mit springenden Koeffizienten. Dissertation, Zürich (2003)Google Scholar
  73. 73.
    Wells, W., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information (1996)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute for Numerical SimulationUniversity of BonnBonnGermany
  2. 2.Institute of MathematicsUniversity of GrazGrazAustria

Personalised recommendations