Advertisement

Computing and Visualization in Science

, Volume 12, Issue 3, pp 87–100 | Cite as

Finite element approximation of elliptic partial differential equations on implicit surfaces

  • Martin BurgerEmail author
Regular article

Abstract

The aim of this paper is to investigate finite element methods for the solution of elliptic partial differential equations on implicitly defined surfaces. The problem of solving such equations without triangulating surfaces is of increasing importance in various applications, and their discretization has recently been investigated in the framework of finite difference methods. For the two most frequently used implicit representations of surfaces, namely level set methods and phase-field methods, we discuss the construction of finite element schemes, the solution of the arising discretized problems, and provide error estimates. The convergence properties of the finite element methods are illustrated by computations for several test problems.

Keywords

Weak Solution Implicit Representation Finite Element Approximation Elliptic Partial Differential Equation Implicit Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams R.A. (1975). Sobolev Spaces. Academic Press, New York zbMATHGoogle Scholar
  2. 2.
    Bal, G., Ren, K.: Reconstruction of singular surfaces by shape sensitivity analysis and level set methods. Preprint, Columbia University (2005)Google Scholar
  3. 3.
    Barles G., Soner H.M. and Souganidis P.E. (1993). Front propagation and phase field theory. SIAM J. Control Optim. 31: 439–469 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bertalmio M., Cheng L.T., Osher S. and Sapiro G. (2001). Variational problems and partial differential equations on implicit surfaces: The framework and examples in image processing and pattern formation. J. Comput. Phys. 174: 759–780 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bertalmio M., Memoli F., Cheng L.T., Sapiro G. and Osher S. (2003). Variational problems and partial differential equations on implicit surfaces: Bye bye triangulated surfaces?. In: Osher, S. and Paragios, N. (eds) Geometric Level Set Methods in Imaging, Vision, and Graphics, pp 381–398. Springer, New York CrossRefGoogle Scholar
  6. 6.
    Brenner S. and Scott L.R. (2002). The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, Berlin zbMATHGoogle Scholar
  7. 7.
    Brezzi F. and Fortin M. (1991). Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15. Springer, New York Google Scholar
  8. 8.
    Burger M. (2003). A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces Free Boundaries 5: 301–329 zbMATHMathSciNetGoogle Scholar
  9. 9.
    Burger, M.: Surface diffusion including adatoms. CAM-Report 04-64 (UCLA, 2004) (submitted)Google Scholar
  10. 10.
    Cahn J.W. and Taylor J.E. (1994). Surface motion by surface diffusion. Acta Metall. Mater. 42: 1045–1063 CrossRefGoogle Scholar
  11. 11.
    Caginalp G. and Socolovsky E. (1994). Phase field computations of single-needle crystals, crystal growth and motion by mean curvature. SIAM J. Sci. Comput. 15: 106–126 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Davi F. and Gurtin M.E. (1990). On the motion of a phase interface by surface diffusion. J. Appl. Math. Phys. 41: 782–811 zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Delfour M.C. and Zolésio J.P. (2001). Shapes and Geometries. Analysis, Differential Calculus and Optimization. SIAM, Philadelphia zbMATHGoogle Scholar
  14. 14.
    Diewald U., Preusser T. and Rumpf M. (2000). Anisotropic diffusion in vector field visualization on Euclidean surfaces. IEEE Trans. Vis. Comp. Graph. 6: 139–149 CrossRefGoogle Scholar
  15. 15.
    Dorsey J. and Hanrahan P. (2000). Digital materials and virtual weatherings. Scient. Am. 282:2: 46–53 Google Scholar
  16. 16.
    Fife P.C., Cahn J.W. and Elliott C.M. (2001). A free boundary model for diffusion induced grain boundary motion. Interfaces Free Boundaries 3: 291–336 zbMATHMathSciNetGoogle Scholar
  17. 17.
    Hintermüller M. and Ring W. (2004). An inexact Newton-CG-type active contour approach for the minimization of the Mumford-Shah functional. J. Math. Imag. Vision 20: 19–42 CrossRefGoogle Scholar
  18. 18.
    Faugeras, O., Clément, F., Deriche, R., Keriven, R., Papadopoulo, T., Roberts, J., Viville, T., Devernay, F., Gomes, J., Hermosillo, G., Kornprobst, P., Lingrand, D.: The inverse EEG and MEG problems, the adjoint state approach, I: The continuous case Research Report RR-3673 (INRIA, 1999)Google Scholar
  19. 19.
    Greer, J.B.: An improvement of a recent Eulerian method for solving PDEs on general geometries. CAM-Report 05-41 (UCLA, 2005)Google Scholar
  20. 20.
    Greer, J.B., Bertozzi, A.L., Sapiro, G.: Fourth order partial differential equations on general geometries. CAM-Report 05-41 (UCLA, 2005)Google Scholar
  21. 21.
    Lions J.L. and Magenes E. (1972). Non-Homogeneous Boundary Value Problems and Applications. Springer, Heidelberg Google Scholar
  22. 22.
    Osher S.J. and Fedkiw R.P. (2002). The Level Set Method and Dynamic Implicit Surfaces. Springer, New York Google Scholar
  23. 23.
    Osher S.J. and Sethian J.A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comp. Phys. 79: 12–49 zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Turk G. (1991). Generating textures on arbitrary surfaces using reaction-diffusion. Comp. Graph. 25: 289–298 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für Numerik und Angewandte MathematikWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations