Computing and Visualization in Science

, Volume 12, Issue 2, pp 77–85 | Cite as

Global random walk modelling of transport in complex systems

  • N. SuciuEmail author
  • C. Vamoş
  • I. Turcu
  • C. V. L. Pop
  • L. I. Ciortea


The Global random walk algorithm performs simultaneously the tracking of large collections of particles and permits massive simulations at reasonable costs. Applications were developed for transport in systems with anisotropic, non-homogeneous, and randomly distributed parameters. As a first illustration we present simulations for diffusion in human skin. Further, a case study for contaminant transport in groundwater shows that the realizations of the transport process converge in mean square limit to a Gaussian diffusion. This investigation also indicates that the use of the Kraichnan routine, based on periodic random fields, yields reliable simulations of transport in Gaussian velocity fields.


Global random walk Lattice gas Human skin Groundwater contamination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eberhard J. (2004). Approximations for transport parameters and self-averaging properties for point-like injections in heterogeneous media. J. Phys. A Math. Gen. 37: 2549–2571 zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Eberhard J., Suciu N. and Vamoş (2007). On the self-averaging of dispersion for transport in quasi-periodic random media. J. Phys. A: Math. Gen. 40: 597–610, doi:  10.1088/1751-8113/40/4/002 zbMATHCrossRefGoogle Scholar
  3. 3.
    Jaekel U. and Vereecken H. (1997). Renormalization group analysis of macrodispersion in a directed random flow. Water Resour. Res. 33: 2287–2299 CrossRefGoogle Scholar
  4. 4.
    Karapiperis T. and Blankleider B. (1991). Cellular automaton model of reaction-transport processes. Physica D 78: 30–64 CrossRefGoogle Scholar
  5. 5.
    Kesten H. and Papanicolaou G.C. (1979). A limit theorem for turbulent diffusion. Commun. Math. Phys. 65: 97–128 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kinzelbach W. and Uffink G. (1991). The random walk method and extensions in groundwater modelling. In: Bear, J. and Corapcioglu, M.Y. (eds) Transport Processes in Porous Media, pp 761–787. Kluwer, Norwell Google Scholar
  7. 7.
    Johnson M.E., Blankschtein D. and Langer R. (1997). Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism. J. Pharm. Sci. 86(10): 1162–1172 CrossRefGoogle Scholar
  8. 8.
    Roth K. and Hammel K. (1996). Transport of conservative chemical through an unsaturated two-dimensional Miller-similar medium with steady state flow. Water Resour. Res. 32(6): 1653–1663 CrossRefGoogle Scholar
  9. 9.
    Schwarze H., Jaekel U. and Vereecken H. (2001). Estimation of macrodispersivity by different approximation methods for flow and transport in randomly heterogeneous media. Transp. Porous Media 43: 265–287 CrossRefGoogle Scholar
  10. 10.
    Suciu N., Vamoş C., Vanderborght J., Hardelauf H. and Vereecken H. (2004). Numerical modeling of large scale transport of contminant solutes using the global random walk algorithm. Monte Carlo Methods Appl. 10(2): 153–177 zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Suciu N., Vamoş C., Knabner P. and Rüde U. (2005). Biased global random walk, a cellular automaton for diffusion. In: Hüsemann, F., Kowarschik, M., and Rüde, U. (eds) Simulationstechnique, 18th Symposium in Erlangen, September 2005., pp 562–567. SCS Publishing House e. V., Erlangen Google Scholar
  12. 12.
    Suciu N. and Vamoş C. (2006). Evaluation of overshooting errors in particle methods for diffusion by biased global random walk. Rev. Anal. Num. Th. Approx. 35: 119–126 zbMATHGoogle Scholar
  13. 13.
    Suciu, N., Vamoş, C., Vanderborght, J., Hardelauf, H., Vereecken, H.: Numerical investigations on ergodicity of solute transport in heterogeneous aquifers, Water Resour. Res. 42, W04409. doi: 10.1029/2005WR004546 (2006)
  14. 14.
    Suciu, N., Vamoş, C., Eberhard, J.: Evaluation of the first-order approximations for transport in heterogeneous media. Water Resour. Res. 42, W11504. doi: 10.1029/2005WR004714 (2006)
  15. 15.
    Vamoş C., Suciu N. and Vereecken H. (2003). Generalized random walk algorithm for the numerical modeling of complex diffusion processes. J. Comput. Phys. 186(2): 527–544 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Vamoş, C., Suciu, N., Turcu, I., Pop, C.V.L., Ciortea, L. I.: Programme BIOTECH, Project No. 01-8-CPD-042/19.10.2001. Research report (2004, in Romanian)Google Scholar
  17. 17.
    Vereecken H., Döring U., Hardelauf H., Jaekel U., Hashagen U., Neuendorf O., Schwarze H. and Seidemann R. (2000). Analysis of solute transport in a heterogeneous aquifer: the Krauthausen field experiment. J. Contam. Hydol. 45: 329–358 CrossRefGoogle Scholar
  18. 18.
    Wilke, J., Pohl, T., Kowarschik, M., Rüde, U.: Cache performance optimizations for parallel lattice Boltzmann codes. In: Proceedings of the EuroPar-03 Conference. Lecture Notes in Computer Science, vol. 2790, pp. 441–450. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • N. Suciu
    • 1
    • 2
    Email author
  • C. Vamoş
    • 2
  • I. Turcu
    • 3
  • C. V. L. Pop
    • 3
  • L. I. Ciortea
    • 3
    • 4
  1. 1.Institute of Applied MathematicsFriedrich-Alexander University of Erlangen-NurembergErlangenGermany
  2. 2.“Tiberiu Popoviciu” Institute of Numerical Analysis, Cluj Napoca Branch of the Romanian AcademyCluj-NapocaRomania
  3. 3.National R&D Institute for Isotopic and Molecular TechnologiesCluj-NapocaRomania
  4. 4.School of EEIESouth Bank UniversityLondonUK

Personalised recommendations