Computing and Visualization in Science

, Volume 11, Issue 3, pp 139–146

Numerical performance of a parallel solution method for a heterogeneous 2D Helmholtz equation

  • A. V. Kononov
  • C. D. Riyanti
  • S. W. de Leeuw
  • C. W. Oosterlee
  • C. Vuik
Open Access
Regular article

Abstract

The parallel performance of a numerical solution method for the scalar 2D Helmholtz equation written for inhomogeneous media is studied. The numerical solution is obtained by an iterative method applied to the preconditioned linear system which has been derived from a finite difference discretization. The preconditioner is approximately inverted using multigrid iterations. Parallel execution is implemented using the MPI library. Only a few iterations are required to solve numerically the so-called full Marmousi problem [Bourgeois, A., et al. in The Marmousi Experience, Proceedings of the 1990 EAEG Workshop on Practical Aspects of Seismic Data Inversion: Eur. Assoc. Expl. Geophys., pp. 5–16 (1991)] for the high frequency range.

References

  1. 1.
    Bamberger A., Joly P. and Roberts J.E. (1984). Second-order absorbing boundary conditions for the wave equation: a solution for the corner problem. SIAM J. Numer. Anal. 27: 323–352 CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bayliss A., Goldstein C.I. and Turkel E. (1985). On accuracy conditions for the numerical computation of waves. J. Comput. Phys. 49: 394–404 Google Scholar
  3. 3.
    Berglund, G.Z.M., de Leeuw, S.W.: A feasibility study of the use of two parallel sparse direct solvers for Helmholtz equation on Linux clusters. Reports of the Department of Applied Sciences., Report 03-01, Delft University of Technology (2004)Google Scholar
  4. 4.
    Bleistein N., Cohen J. and Stockwell J. Jr. (2001). Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion. Springer, Berlin MATHGoogle Scholar
  5. 5.
    Bookman C. (2002). Linux Clustering: Building and Maintaining Linux Clusters. Sams Publishing, New York Google Scholar
  6. 6.
    Bourgeois, A., Bourget, M., Lailly, P., Poulet, M., Ricarte, P., Versteeg, R.: Marmousi, model and data. In: Versteeg, R., Grau, G., (eds.) The Marmousi Experience, Proceedings of the 1990 EAEG Workshop on Practical Aspects of Seismic Data Inversion: Eur. Assoc. Expl. Geophys., pp. 5–16 (1991)Google Scholar
  7. 7.
    Erlangga Y.A., Vuik C. and Oosterlee C.W. (2004). On a class of preconditioners for the Helmholtz equation. Appl. Numer. Math. 50: 409–425 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Erlangga Y.A., Vuik C. and Oosterlee C.W. (2006). A novel multigrid preconditioner for heterogeneous Helmholtz problems. SIAM J. Sci. Comp. 27: 1471–1492 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Heikkola E., Rossi T. and Toivanen J. (2003). A parallel fictitious domain method for the three-dimensional Helmholtz equation. SIAM J. Sci. Comput. 24(5): 1567–1568 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Larsson E. and Holmgren S. (2003). Parallel solution of the Helmholtz equation in a multilayer domain. BIT Numer. Math. 43: 387–411 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Marfurt K.J. (1984). Accuracy of finite-difference and finite element modeling of the scalar and elastic wave equations.. Geophysics 49(5): 533–549 CrossRefGoogle Scholar
  12. 12.
    Oppenheim A. and Schafer R. (1989). Discrete-time Signal Processing. Prentice-Hall, Englewood Cliffs MATHGoogle Scholar
  13. 13.
    Peterson A., Ray S. and Mittra R. (1998). Computational Methods for Electromagnetics. IEEE Press, New York Google Scholar
  14. 14.
    Quinn M.J. (1994). Parallel Computing: Theory and Practice. McGraw-Hill, New York Google Scholar
  15. 15.
    Riyanti C.D., Erlangga Y.A., Plessix R.-E., Mulder W.A., Vuik C. and Oosterlee C.W. (2006). A new iterative solver for the time-harmonic wave equation. Geophysics 72(5): E57–E63 CrossRefGoogle Scholar
  16. 16.
    Snir M., Otto S., Huss-Lederman S., Walker D., Dongarra J. (1998) MPI-The Complete Reference: The MPI Core, vol. 1. MIT, CambridgeGoogle Scholar
  17. 17.
    Trottenberg U., Oosterlee C. and Schüller A. (2001). Multigrid. Academic, London MATHGoogle Scholar
  18. 18.
    Turkel E. and Yefet A. (1998). Absorbing PML boundary layers for wave-like equations. Appl. Numer. Math. 27: 533–557 MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Vander Vorst H.A. (1992). BI-CGSTAB: a fast and smoothly converging variant of bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13: 631–644 CrossRefMathSciNetGoogle Scholar
  20. 20.
    de Zeeuw P.M. (1998). Matrix-dependent prolongation and restrictions in a blackbox multigrid solver. J. Comp. Appl. Math. 33: 1–27 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. V. Kononov
    • 1
  • C. D. Riyanti
    • 3
  • S. W. de Leeuw
    • 2
  • C. W. Oosterlee
    • 3
  • C. Vuik
    • 3
  1. 1.Acoustical Imaging & Sound ControlDelft University of TechnologyDelftThe Netherlands
  2. 2.Computational Physics Group, PCMT, DelftChemDelft University of TechnologyDelftThe Netherlands
  3. 3.Numerical Analysis Group, Delft Institute of Applied MathematicsDelft University of TechnologyDelftThe Netherlands

Personalised recommendations