Computing and Visualization in Science

, Volume 11, Issue 1, pp 59–66 | Cite as

Smoothers for control- and state-constrained optimal control problems

Regular article

Abstract

A framework for designing robust smoothing procedures for control- and state-constrained optimal control problems is presented. The focus is on minimization problems governed by elliptic partial differential equations with additional pointwise constraints on the control variable or on the state variable, respectively. The basic principle for the construction of the present smoothers is the solution of the corresponding optimality systems at grid-point level. A new approach is presented to cope with the lack of differentiability due to the presence of the constraints.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arian, E., Ta’asan, S.: Smoothers for optimization problems. In: Duane Melson, N., Manteuffel, T.A., McCormick, S.F., Douglas, C.C. (eds.) Seventh Copper Mountain Conference on Multigrid Methods, vol. CP3339, pp. 15–30. NASA Conference Publication, NASA, Hampton, VA (1995)Google Scholar
  2. 2.
    Borzì, A.: Multigrid Methods for Optimality Systems. habilitation thesis, University of Graz, 2003 (http://www.uni-graz.at/imawww/borzi/publist.html)Google Scholar
  3. 3.
    Borzì A. and Borzì G. (2004). An efficient algebraic multigrid method for solving optimality systems. Comput. Vis. Sci. 7(3/4): 183–188 MATHMathSciNetGoogle Scholar
  4. 4.
    Borzì A. and Kunisch K. (2000). The numerical solution of the steady state solid fuel ignition model and its optimal control. SIAM J. Sci. Comput. 22: 263–284 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Borzì A. and Kunisch K. (2005). A multigrid scheme for elliptic constrained optimal control problems. Comput. Optim. Appl. 31: 309–333 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Borzì A. and Kunisch K. (2006). A globalization strategy for the multigrid solution of elliptic optimal control problems. Optim. Methods Softw. 21(3): 445–459 CrossRefMathSciNetGoogle Scholar
  7. 7.
    Brandt A. (1977). Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31: 333–390 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Brandt A. and Cryer C.W. (1983). Multi-grid algorithms for the solution of linear complementarity problems arising from free boundary problems. SIAM J. Sci. Stat. Comput. 4: 655–684 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dreyer Th., Maar B. and Schulz V. (2000). Multigrid optimization in applications. J. Comput. Appl. Math. 120: 67–84 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Goldberg H. and Tröltzsch F. (1993). Second order sufficient optimality conditions for a class of non-linear parabolic boundary control problems. SIAM J. Control Optim. 31: 1007–1027 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hackbusch W. (1980). Fast solution of elliptic control problems. J. Optim. Theory Appl. 31: 565–581 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hackbusch W. (1985). Multi-Grid Methods and. Springer, New York MATHGoogle Scholar
  13. 13.
    Kornhuber R. and Krause R. (2001). Adaptive multigrid methods for Signorini’s problem in linear elasticity. Comput. Vis. Sci. 4: 9–20 MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lions J.L. (1971). Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin MATHGoogle Scholar
  15. 15.
    Lions J.L. (1985). Control of Distributed Singular Systems. Gauthier-Villars, Paris Google Scholar
  16. 16.
    Meyer C., Rösch A. and Tröltzsch F. (2006). Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33: 209–228 MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Meyer, C., Rösch, A., Tröltzsch, F.: On an elliptic optimal control problem with pointwise mixed control-state constraints. Recent Advances in Optimization. Proceedings of the 12th French–German–Spanish Conference on Optimization held in Avignon, September 20–24, 2004. In: Seeger, A. (ed.) Lectures Notes in Economics and Mathematical Systems, vol. 563, pp. 187– 204. Springer, Berlin (2006)Google Scholar
  18. 18.
    Reisinger C. and Wittum G. (2004). On multigrid for anisotropic equations and variational inequalities pricing multi-dimensional european and american options. Comput. Vis. Sci. 4: 189–197 MathSciNetGoogle Scholar
  19. 19.
    Tröltzsch F. (2005). Optimale Steuerung Partieller Differentialgleichung. Vieweg Verlag, Braunschweig Google Scholar
  20. 20.
    Trottenberg U., Oosterlee C. and Schüller A. (2001). Multigrid. Academic, London MATHGoogle Scholar
  21. 21.
    Venner C.H. and Lubrecht A.A. (1993). Multilevel Methods in Lubrication. Elsevier, Amsterdam Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institut für Mathematik und Wissenschaftliches RechnenKarl-Franzens-Universität GrazGrazAustria

Personalised recommendations