Advertisement

Computing and Visualization in Science

, Volume 7, Issue 3–4, pp 129–140 | Cite as

Cell-centred multigrid revisited

  • Marcus Mohr
  • Roman WienandsEmail author
Regular article

Abstract

In this paper we treat the cell-centred multigrid approach, which distinguishes itself from the classical vertex-centred multigrid by a non-nested hierarchy of grid nodes and the use of constant, problem-independent transfer operators even in complicated situations. We demonstrate, that the tool of Local Fourier Analysis can also be profitably applied in this setting. We consider in detail the standard transfer operators from literature and their respective polynomial and Fourier orders, paying special attention to the combination of piecewise constant interpolation and its adjoint. Furthermore, we give several numerical examples for model problems and an application from biomedical engineering.

Keywords

Coarse Grid Transfer Operator Multigrid Method Interface Problem Prolongation Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alcouffe, R.E., Brandt, A., Dendy, J.E., Painter, J.W.: The multi–grid methods for the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci. Stat. Comput. 2, 430–454 (1981)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Braess, D.: Towards algebraic multigrid for elliptic problems of second order. Computing, 55, 379–393 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bramble, J., Ewing, R., Pasciak, J., Shen, J.: The Analysis of Multigrid Algorithms for Cell Centered Finite Difference methods. Advance in Computational Mathematics, 5, 15–29 (1996)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brandt, A.: Multi–level adaptive solutions to boundary–value problems. Math. Comp. 31, 333–390 (1977)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brandt, A.: Multigrid techniques: 1984 guide with applications to fluid dynamics. GMD–Studien Nr. 85. Gesellschaft für Mathematik und Datenverarbeitung, St. Augustin, 1984Google Scholar
  6. 6.
    de Zeeuw, P.M.: Matrix-dependent prolongations and restrictions in a black box multigrid solver. J. Comput. Appl. Math. 33, 1–27 (1990)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Douglas, C.C., Douglas, M.B.: MGNet Bibliography. Department of Computer Science and the Center for Computational Sciences, University of Kentucky, Lexington, KY, USA and Department of Computer Science, Yale University, New Haven, CT, USA, 1991–2002 (last modified on September 28, 2002); see http://www.mgnet.org/mgnet-bib.htmlGoogle Scholar
  8. 8.
    Douglas, C.C., Hu, J., Kowarschik, M., Rüde, U., Weiss, C.: Cache Optimization for Structured and Unstructured Grid Multigrid. Electronic Transactions on Numerical Analysis, 10, 21–40 (2000)MathSciNetGoogle Scholar
  9. 9.
    Ersland, B.G., Teigland, R.: Comparison of two cell–centered multigrid schemes for problems with discontinuous coefficients. Numer. Meth. for PDE, 9, 265–283 (1993)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ewing, R.E., Shen, J.: A multigrid algorithm for the cell–centered finite difference scheme. In: Melson, N.D., Manteuffel, T.A., McCormick, S.F. (eds.), Sixth Copper Mountain Conference on Multigrid Methods, Vol. CP 3224, Hampton, VA 1993. NASA, pp. 583–592Google Scholar
  11. 11.
    Gjesdal, T.: Smoothing analysis of multicolour pattern schemes. J. Comput. Appl. Math. 85, 345–350 (1997)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Goedecker, S., Hoisie, A.: Performance Optimization of Numerically Intensive Codes. SIAM 2001Google Scholar
  13. 13.
    Hackbusch, W.: Multigrid Methods and Applications, Vol. 4 of Computational Mathematics. Berlin: Springer–Verlag 1985Google Scholar
  14. 14.
    Hemker, P.W.: On the order of prolongations and restrictions in multigrid procedures. J. Comput. Appl. Math. 32, 423–429 (1990)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Henn, S.: Numerische Lösung und Modellierung eines inversen Problems zur Assimilation digitaler Bilddaten. PhD thesis, Heinrich-Heine-Universität Düsseldorf, Berlin: Logos Verlag 2001Google Scholar
  16. 16.
    Dendy, Jr., J.E.: Black box multigrid. J. Comp. Phys. 48, 366–386 (1982)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Khalil, M.: Analysis of linear multigrid methods for elliptic differential equations with discontinuous and anisotropic coefficients. PhD thesis, Technical University Delft, The Netherlands, 1989Google Scholar
  18. 18.
    Khalil, M., Wesseling, P.: A cell-centered multigrid method for three–dimensional anisotropic–diffusion and interface problems. In: Mandel, J., McCormick, S.F. (eds.), Preliminary Proc. of the 4th Copper Mountain Conference on Multigrid Methods, Vol. 3, pp. 99–117, Denver, 1989. Computational Mathematics Group, Univ. of ColoradoGoogle Scholar
  19. 19.
    Khalil, M., Wesseling, P.: Vertex–centered and cell–centered multigrid for interface problems. In: Mandel, J., McCormick, S.F. (eds.), Preliminary Proc. of the 4th Copper Mountain Conference on Multigrid Methods, Vol. 3, pp. 61–97, Denver, 1989. Computational Mathematics Group, Univ. of ColoradoGoogle Scholar
  20. 20.
    Khalil, M., Wesseling, P.: Vertex-centered and cell-centered multigrid for interface problems. J. Comput. Phys. 98, 1–20 (1992)CrossRefGoogle Scholar
  21. 21.
    Kwak, D.Y.: V-Cycle Multigrid for cell-centered Finite Differences. SIAM J. Sci. Comput. 21(2), 552–564 (1999)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kwak, D.Y.: V-cycle Multigrid Convergence for Cell Centered Finite Difference Method, 3-D case. In: Herrera, I., Keyes, D., Widlund, O., Yates, R. (eds.), Fourteenth International Conference on Domain Decomposition Methods, 2002. available online atDDM.orgGoogle Scholar
  23. 23.
    Llorente, I.M., Melson, N.D.: Behavior of plane relaxation methods as multigrid smoothers. Elect. Trans. Numer. Anal. 10, 92–114 (2000)MathSciNetGoogle Scholar
  24. 24.
    Mohr, M., Vanrumste, B.: Comparing Iterative Solvers for Linear Systems associated with the Finite Difference Discretisation of the Forward Problem in Electroencephalographic Source Analysis. Mathematical and Biological Engineering and Computing, 41(1), 75–84 (2003)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Stüben, K.: An introduction to algebraic multigrid. In: Trottenberg, U., Oosterlee, C.W., Schüller, A. (eds.), Multigrid, London: Academic Press 2000, pp. 413–532. Appendix AGoogle Scholar
  26. 26.
    Stüben, K., Trottenberg, U.: Multigrid methods: Fundamental algorithms, model problem analysis and applications. In: Hackbusch, W., Trottenberg, U. (eds.), Multigrid Methods, Vol. 960 of Lecture Notes in Mathematics. Berlin: Springer–Verlag 1982, pp. 1–176Google Scholar
  27. 27.
    Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. London: Academic Press 2000Google Scholar
  28. 28.
    Vanrumste, B.: EEG dipole source analysis in a realistic head model. PhD thesis, Faculteit Toegepaste Wetenschappen, Universiteit Gent, 2001Google Scholar
  29. 29.
    Wesseling, P.: Cell-centered multigrid for interface problems. J. Comput. Phys. 79, 85–91 (1988)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wesseling, P.: Cell-centered multigrid for interface problems. In: McCormick, S.F. (ed.), Multigrid Methods: Theory, Applications, and Supercomputing, Vol. 110 of Lecture Notes in Pure and Applied Mathematics. New York: Marcel Dekker 1988, pp. 631–641Google Scholar
  31. 31.
    Wesseling, P.: A multigrid method for elliptic equations with a discontinuous coefficient. In: van der Burgh, A.H.P., Mattheij, R.M.M. (eds.), Proceedings of the First International Conference on Industrial and Applied Mathematics (ICIAM 87). Philadelphia: SIAM 1988, pp. 173–183Google Scholar
  32. 32.
    Wesseling, P.: An Introduction to Multigrid Methods. Chichester: John Wiley & Sons 1992. Reprinted by www.MGNet.orgGoogle Scholar
  33. 33.
    Wienands, R.: Extended Local Fourier analysis for multigrid: Optimal smoothing, coarse grid correction, and preconditioning. PhD thesis, University of Cologne, Germany, 2001Google Scholar
  34. 34.
    Wienands, R., Oosterlee, C.W.: On three-grid Fourier analysis for multigrid. SIAM J. Sci. Comput. 23(2), 651–671 (2001)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wolters, C.H., Kuhn, M., Anwander, A., Reitzinger, S.: A parallel algebraic multigrid solver for finite element method based source localization in the human brain. Computing and Visualization in Science. 5, 165–177 (2002)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Yavneh, I.: On red-black SOR smoothing in multigrid. SIAM J. Sci. Comput. 17, 180–192 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Friedrich-Alexander-University of Erlangen-NurembergErlangenGermany
  2. 2.Fraunhofer Institute for Algorithms and Scientific Computing (SCAI)Sankt AugustinGermany

Personalised recommendations