Advertisement

Baclofen as an adjuvant therapy for autism: a randomized, double-blind, placebo-controlled trial

  • Seyedeh-Mahsa Mahdavinasab
  • Amene Saghazadeh
  • Nogol Motamed-Gorji
  • Salar Vaseghi
  • Mohammad-Reza Mohammadi
  • Rosa Alichani
  • Shahin AkhondzadehEmail author
Original Contribution

Abstract

Increasing evidence suggests that the function of the GABAergic system is abnormally low in autism spectrum disorder (ASD). Baclofen, which functions as a selective agonist for GABAB receptors, does appear promising for the treatment of ASD. We conducted a 10-week randomized-controlled study aimed at evaluating the potential of baclofen as an adjuvant therapy to enhance the effect of risperidone in children with ASD. Sixty-four children (3–12 years) with moderate-to-severe irritability symptoms of ASD were included. We used the Aberrant Behavior Checklist-Community Edition (ABC-C) for the outcome measures on each of the follow-up visits (weeks 0, 5, and 10). Analysis of the combined data revealed significant improvement for all the ABC subscales (irritability: F = 51.644, df = 1.66, p < 0.001, lethargy: F = 39.734, df = 1.38, p < 0.001, stereotypic behavior: F = 25.495, df = 1.56, p < 0.001, hyperactivity: F = 54.135, df = 1.35, p < 0.001, and inappropriate speech: F = 19.277, df = 1.47, p = 0.004). Combined treatment with baclofen and risperidone exerted a greater effect on improvement of hyperactivity symptoms at both midpoint [Cohen’s d, 95% confidence interval (CI) = − 3.14, − 5.56 to − 0.72] and endpoint (d, 95% CI = − 4.45, − 8.74 to − 0.16) when compared with treatment with placebo plus risperidone. The two treatments achieved comparable results for other outcome measures. Our data support safety and efficacy of baclofen as an adjuvant to risperidone for improvement of hyperactivity symptoms in children with ASD.

Keywords

Baclofen Autism GABA GABAergic inhibition Hyperactivity Randomized-controlled trial 

Notes

Acknowledgements

This study was funded by Tehran University of Medical Sciences and Health Services (Grant number: 32601).

Funding

This study was supported by a grant from Tehran University of Medical Sciences to Prof. Shahin Akhondzadeh (Grant No: 32601).

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

References

  1. 1.
    American Psychiatric A (2013) Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Publishing, Wachington, DCCrossRefGoogle Scholar
  2. 2.
    Nakamura K, Sekine Y, Ouchi Y, Tsujii M, Yoshikawa E, Futatsubashi M et al (2010) Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch Gene Pychiatry 67(1):59–68CrossRefGoogle Scholar
  3. 3.
    Horacek J, Bubenikova-Valesova V, Kopecek M, Palenicek T, Dockery C, Mohr P et al (2006) Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Dugs 20(5):389–409CrossRefGoogle Scholar
  4. 4.
    De Hert M, Dobbelaere M, Sheridan EM, Cohen D, Correll CU (2011) Metabolic and endocrine adverse effects of second-generation antipsychotics in children and adolescents: a systematic review of randomized, placebo controlled trials and guidelines for clinical practice. Eur Psychiatry 26(3):144–158CrossRefPubMedGoogle Scholar
  5. 5.
    Research Units on Pediatric Psychopharmacology Autism N (2005) Risperidone treatment of autistic disorder: longer-term benefits and blinded discontinuation after 6 months. Am J Psychiatry 62(7):1361–1369CrossRefGoogle Scholar
  6. 6.
    Benarroch EE (2012) GABAB receptors: structure, functions, and clinical implications. Neurology 78(8):578–584CrossRefPubMedGoogle Scholar
  7. 7.
    Cryan JF, Kaupmann K (2005) Don’t worry ‘B’happy!: a role for GABAB receptors in anxiety and depression. Trends Pharmacol Sci 26(1):36–43CrossRefGoogle Scholar
  8. 8.
    Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD (2009) GABA A receptor downregulation in brains of subjects with autism. J Autism Dev Disord 39(2):223CrossRefPubMedGoogle Scholar
  9. 9.
    Fatemi SH, Folsom TD, Reutiman TJ, Thuras PD (2009) Expression of GABA B receptors is altered in brains of subjects with autism. Cerebellum 8(1):64–69CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML (2001) Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord 31(6):537–543CrossRefPubMedGoogle Scholar
  11. 11.
    Samaco RC, Hogart A, LaSalle JM (2005) Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum Mol Gen 14(4):483–492CrossRefPubMedGoogle Scholar
  12. 12.
    Oblak AL, Gibbs TT, Blatt GJ (2010) Decreased GABA(B) receptors in the cingulate cortex and fusiform gyrus in autism. J Neurochem 114(5):1414–1423PubMedPubMedCentralGoogle Scholar
  13. 13.
    Gaetz W, Bloy L, Wang DJ, Port RG, Blaskey L, Levy SE et al (2014) GABA estimation in the brains of children on the autism spectrum: measurement precision and regional cortical variation. Neuroimage 86:1–9CrossRefPubMedGoogle Scholar
  14. 14.
    Mori T, Mori K, Fujii E, Toda Y, Miyazaki M, Harada M et al (2012) Evaluation of the GABAergic nervous system in autistic brain: (123)I-iomazenil SPECT study. Brain Dev 34(8):648–654CrossRefPubMedGoogle Scholar
  15. 15.
    Yip J, Soghomonian Jean J, Blatt Gene J (2009) Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: an in situ hybridization study. Autism Res 2(1):50–59CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Blatt GJ, Fatemi SH (2011) Alterations in GABAergic biomarkers in the autism brain: research findings and clinical implications. Anatomical Rec 294(10):1646–1652CrossRefGoogle Scholar
  17. 17.
    Dhossche D, Applegate H, Abraham A, Maertens P, Bland L, Bencsath A et al (2002) Elevated plasma gamma-aminobutyric acid (GABA) levels in autistic youngsters: stimulus for a GABA hypothesis of autism. Med Sci Monitor 8(8):PR1–PR6Google Scholar
  18. 18.
    Silverman JL, Pride MC, Hayes JE, Puhger KR, Butler-Struben HM, Baker S et al (2015) GABA B receptor agonist R-baclofen reverses social deficits and reduces repetitive behavior in Two mouse models of autism. Neuropsychopharmacol 40(9):2228CrossRefGoogle Scholar
  19. 19.
    Stoppel LJ, Kazdoba TM, Schaffler MD, Preza AR, Heynen A, Crawley JN et al (2018) R-baclofen reverses cognitive deficits and improves social interactions in two lines of 16p11. 2 deletion mice. Neuropsychopharmacol 43(3):513CrossRefGoogle Scholar
  20. 20.
    Erickson CA, Veenstra-Vanderweele JM, Melmed RD, McCracken JT, Ginsberg LD, Sikich L et al (2014) STX209 (arbaclofen) for autism spectrum disorders: an 8-week open-label study. J Autism Dev Disord 44(4):958–964CrossRefPubMedGoogle Scholar
  21. 21.
    Veenstra-VanderWeele J, Cook EH, King BH, Zarevics P, Cherubini M, Walton-Bowen K et al (2017) Arbaclofen in children and adolescents with autism spectrum disorder: a randomized, controlled, phase 2 trial. Neuropsychopharmacol 42(7):1390–1398CrossRefGoogle Scholar
  22. 22.
    General Assembly of the World Medical Association (2014) World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Coll Dent 81(3):14Google Scholar
  23. 23.
    Association AP. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub; 2013Google Scholar
  24. 24.
    Aman MG, Burrow WH, Wolford PL (1995) The Aberrant Behavior Checklist-Community: factor validity and effect of subject variables for adults in group homes. Am J Mental Retard 100(3):283–292Google Scholar
  25. 25.
    Lord C, Rutter M, Le Couteur A (1994) Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 24(5):659–685CrossRefGoogle Scholar
  26. 26.
    Aman MG, Singh NN, Stewart AW, Field CJ (1985) The aberrant behavior checklist: a behavior rating scale for the assessment of treatment effects. Am J Ment Defic 89(5):485–491PubMedGoogle Scholar
  27. 27.
    Collins AL, Ma D, Whitehead PL, Martin ER, Wright HH, Abramson RK et al (2006) Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics 7(3):167–174CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Martin ER, Menold MM, Wolpert CM, Bass MP, Donnelly SL, Ravan SA et al (2000) Analysis of linkage disequilibrium in gamma-aminobutyric acid receptor subunit genes in autistic disorder. Am J Med Gen 96(1):43–48CrossRefGoogle Scholar
  29. 29.
    McCauley JL, Olson LM, Delahanty R, Amin T, Nurmi EL, Organ EL et al (2004) A linkage disequilibrium map of the 1-Mb 15q12 GABA(A) receptor subunit cluster and association to autism. Am J Med Genetics B Neuropsychiatric Gen 131(1):51–59CrossRefGoogle Scholar
  30. 30.
    Ma DQ, Whitehead PL, Menold MM, Martin ER, Ashley-Koch AE, Mei H et al (2005) Identification of significant association and gene-gene interaction of GABA receptor subunit genes in autism. Am J Hum Gen 77(3):377–388CrossRefGoogle Scholar
  31. 31.
    Collins AL, Ma D, Whitehead PL, Martin ER, Wright HH, Abramson RK et al (2006) Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics 7(3):167–174CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kim SA, Kim JH, Park M, Cho IH, Yoo HJ (2006) Association of GABRB3 polymorphisms with autism spectrum disorders in Korean trios. Neuropsychobiology 54(3):160–165CrossRefPubMedGoogle Scholar
  33. 33.
    Hogart A, Nagarajan RP, Patzel KA, Yasui DH, Lasalle JM (2007) 15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders. Hum Mol Gen 16(6):691–703CrossRefPubMedGoogle Scholar
  34. 34.
    Tyzio R, Cossart R, Khalilov I, Minlebaev M, Hübner CA, Represa A et al (2006) Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science 314(5806):1788–1792CrossRefGoogle Scholar
  35. 35.
    Tyzio R, Nardou R, Ferrari DC, Tsintsadze T, Shahrokhi A, Eftekhari S et al (2014) Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 343(6171):675CrossRefGoogle Scholar
  36. 36.
    Wang DD, Kriegstein AR (2011) Blocking Early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits. Cereb Cortex 21(3):574–587CrossRefPubMedGoogle Scholar
  37. 37.
    Guastella AJ, Einfeld SL, Gray KM, Rinehart NJ, Tonge BJ, Lambert TJ et al (2010) Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry 67(7):692–694CrossRefPubMedGoogle Scholar
  38. 38.
    Hollander E, Bartz J, Chaplin W, Phillips A, Sumner J, Soorya L et al (2007) Oxytocin increases retention of social cognition in autism. Biol Psychiatry 61(4):498–503CrossRefPubMedGoogle Scholar
  39. 39.
    Hollander E, Novotny S, Hanratty M, Yaffe R, DeCaria CM, Aronowitz BR et al (2003) Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmaco 28(1):193CrossRefGoogle Scholar
  40. 40.
    Fatemi SH, Reutiman TJ, Folsom TD, Rooney RJ, Patel DH, Thuras PD (2010) mRNA and protein levels for GABA A α4, α5, β1 and GABA B R1 receptors are altered in brains from subjects with autism. J Autism Develop Disord 40(6):743–750CrossRefGoogle Scholar
  41. 41.
    Laurence JA, Fatemi SH (2005) Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 4(3):206–210CrossRefPubMedGoogle Scholar
  42. 42.
    DeLorey TM, Sahbaie P, Hashemi E, Homanics GE, Clark JD (2008) Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behav Brain Res 187(2):207–220CrossRefPubMedGoogle Scholar
  43. 43.
    DeLorey TM, Sahbaie P, Hashemi E, Li WW, Salehi A, Clark DJ (2011) Somatosensory and sensorimotor consequences associated with the heterozygous disruption of the autism candidate gene, Gabrb3. Behav Brain Res 216(1):36–45CrossRefPubMedGoogle Scholar
  44. 44.
    Sala M, Braida D, Lentini D, Busnelli M, Bulgheroni E, Capurro V et al (2011) Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism. Biol Psychiatry 69(9):875–882CrossRefPubMedGoogle Scholar
  45. 45.
    Banerjee A, Garcia-Oscos F, Roychowdhury S, Galindo LC, Hall S, Kilgard MP (2013) Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism. Int J Neuropsychopharmacol 16(6):1309–1318CrossRefPubMedGoogle Scholar
  46. 46.
    Bertelsen F, Moller A, Folloni D, Drasbek KR, Scheel-Kruger J, Landau AM (2017) Increased GABAA receptor binding in amygdala after prenatal administration of valproic acid to rats. Acta Neuropsychiatr 29(5):309–314CrossRefPubMedGoogle Scholar
  47. 47.
    Han S, Tai C, Jones CJ, Scheuer T, Catterall WA (2014) Enhancement of inhibitory neurotransmission by GABAA receptors having alpha2,3-subunits ameliorates behavioral deficits in a mouse model of autism. Neuron 81(6):1282–1289CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Nakamura T, Arima-Yoshida F, Sakaue F, Nasu-Nishimura Y, Takeda Y, Matsuura K et al (2016) PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking. Nat Commun 7:10861CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Cohen BI (2002) Use of a GABA-transaminase agonist for treatment of infantile autism. Med Hypotheses 59(1):115–116CrossRefPubMedGoogle Scholar
  50. 50.
    Kratsman N, Getselter D, Elliott E (2016) Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacol 102:136–145CrossRefGoogle Scholar
  51. 51.
    Olmos-Serrano JL, Corbin JG, Burns MP (2011) The GABA(A) receptor agonist THIP ameliorates specific behavioral deficits in the mouse model of fragile X syndrome. Dev Neurosci 33(5):395–403CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Penn RD, Savoy SM, Corcos D, Latash M, Gottlieb G, Parke B et al (1989) Intrathecal baclofen for severe spinal spasticity. New Engl J Med 320(23):1517–1521CrossRefPubMedGoogle Scholar
  53. 53.
    Omari TI, Benninga MA, Sansom L, Butler RN, Dent J, Davidson GP (2006) Effect of baclofen on esophagogastric motility and gastroesophageal reflux in children with gastroesophageal reflux disease: a randomized controlled trial. J Pediatrics 149(4):468–474CrossRefGoogle Scholar
  54. 54.
    Garbutt JC, Kampov-Polevoy AB, Gallop R, Kalka-Juhl L, Flannery BA (2010) Efficacy and safety of baclofen for alcohol dependence: a randomized, double-blind, placebo-controlled trial. Alcoholism Clin Exp Res 34(11):1849–1857CrossRefGoogle Scholar
  55. 55.
    Lal R, Sukbuntherng J, Tai EH, Upadhyay S, Yao F, Warren MS et al (2009) Arbaclofen placarbil, a novel R-baclofen prodrug: improved absorption, distribution, metabolism, and elimination properties compared with R-baclofen. J Pharmacol Exp Therapeutics 330(3):911–921CrossRefGoogle Scholar
  56. 56.
    Henderson C, Wijetunge L, Kinoshita MN, Shumway M, Hammond RS, Postma FR et al (2012) Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen. Sci Translational Med 4(152):152ra28CrossRefGoogle Scholar
  57. 57.
    Qin M, Huang T, Kader M, Krych L, Xia Z, Burlin T, Zeidler Z, Zhao T, Smith CB (2015) R-Baclofen reverses a social behavior deficit and elevated protein synthesis in a mouse model of fragile X syndrome. Int J Neuropsychopharmacol.  https://doi.org/10.1093/ijnp/pyv034 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sinclair D, Featherstone R, Naschek M, Nam J, Du A, Wright S, Pance K, Melnychenko O, Weger R, Akuzawa S, Matsumoto M, Siegel SJ (2017) GABA-B Agonist baclofen normalizes auditory-evoked neural oscillations and behavioral deficits in the Fmr1 knockout mouse model of Fragile X syndrome. eNeuro.  https://doi.org/10.1523/ENEURO.0380-16.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Berry-Kravis E, Hagerman R, Visootsak J, Budimirovic D, Kaufmann WE, Cherubini M et al (2017) Arbaclofen in fragile X syndrome: results of phase 3 trials. J Neurodevelop Disord 9:3CrossRefGoogle Scholar
  60. 60.
    Silverman JL, Pride MC, Hayes JE, Puhger KR, Butler-Struben HM, Baker S et al (2015) GABAB receptor agonist R-baclofen reverses social deficits and reduces repetitive behavior in two mouse models of autism. Neuropsychopharmacol 40(9):2228–2239CrossRefGoogle Scholar
  61. 61.
    Port RG, Gajewski C, Krizman E, Dow HC, Hirano S, Brodkin ES et al (2017) Protocadherin 10 alters gamma oscillations, amino acid levels, and their coupling; baclofen partially restores these oscillatory deficits. Neurobiol Dis 108:324–338CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Psychiatric Research Center, Roozbeh Psychiatric HospitalTehran University of Medical SciencesTehranIran
  2. 2.Department of Psychiatry, Razi HospitalUniversity of Social Welfare and Rehabilitation SciencesTehranIran

Personalised recommendations