European Child & Adolescent Psychiatry

, Volume 26, Issue 11, pp 1361–1376 | Cite as

Atypical age-dependency of executive function and white matter microstructure in children and adolescents with autism spectrum disorders

  • Kenia MartínezEmail author
  • Jessica Merchán-Naranjo
  • Laura Pina-Camacho
  • Yasser Alemán-Gómez
  • Leticia Boada
  • David Fraguas
  • Carmen Moreno
  • Celso Arango
  • Joost Janssen
  • Mara Parellada
Original Contribution


Executive function (EF) performance is associated with measurements of white matter microstructure (WMS) in typical individuals. Impaired EF is a hallmark symptom of autism spectrum disorders (ASD) but it is unclear how impaired EF relates to variability in WMS. Twenty-one male youth (8–18 years) with ASD and without intellectual disability and twenty-one typical male participants (TP) matched for age, intelligence quotient, handedness, race and parental socioeconomic status were recruited. Five EF domains were assessed and several DTI-based measurements of WMS [fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD)] were estimated for eighteen white matter tracts. The ASD group had lower scores for attention (F = 8.37, p = 0.006) and response inhibition (F = 13.09, p = 0.001). Age-dependent changes of EF performance and WMS measurements were present in TP but attenuated in the ASD group. The strongest diagnosis-by-age effect was found for forceps minor, left anterior thalamic radiation and left cingulum angular bundle (all p’s ≤ 0.002). In these tracts subjects with ASD tended to have equal or increased FA and/or reduced MD and/or RD at younger ages while controls had increased FA and/or reduced MD and/or RD thereafter. Only for TP individuals, increased FA in the left anterior thalamic radiation was associated with better response inhibition, while reduced RD in forceps minor and left cingulum angular bundle was related to better problem solving and working memory performance respectively. These findings provide novel insight into the age-dependency of EF performance and WMS in ASD, which can be instructive to cognitive training programs.


Autism spectrum disorders Executive function White matter microstructure Cognition Development Age 



This study is supported by the Spanish Ministry of Economy and Competitiveness, Instituto de Salud Carlos III, CIBERSAM, the Ramon y Cajal Program, the CDTI under the CENIT Program (AMIT Project), Madrid Regional Government (S2010/BMD-2422 AGES), European Union Structural Funds and European Union Seventh Framework Programme under grant agreements FP7-HEALTH-2009-2.2.1-2-241909 (Project EU-GEI), FP7-HEALTH-2009-2.2.1-3-242114 (Project OPTiMISE), FP7-HEALTH-2013-2.2.1-2-603196 (Project PSYSCAN), and FP7-HEALTH-2013-2.2.1-2-602478 (Project METSY); the ERA-NET NEURON (Network of European Funding for Neuroscience Research) (PIM2010ERN-00642), Fundación Alicia Koplowitz (FAK2012, FAK2013), Fundación Mutua Madrileña (FMM2009), and Caja Navarra.

Compliance with ethical standards

Conflict of interest

The authors would like to thank all individuals and their families for participating. None of the authors have a conflict of interest to declare.

Supplementary material

787_2017_990_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2345 kb)


  1. 1.
    Dawson G, Webb S, Schellenberg GD, Dager S, Friedman S, Aylward E, Richards T (2002) Defining the broader phenotype of autism: genetic, brain, and behavioral perspectives. Dev Psychopathol 14(3):581–611CrossRefPubMedGoogle Scholar
  2. 2.
    O’Hearn K, Asato M, Ordaz S, Luna B (2008) Neurodevelopment and executive function in autism. Dev Psychopathol 20(4):1103–1132. doi: 10.1017/s0954579408000527 CrossRefPubMedGoogle Scholar
  3. 3.
    Corbett BA, Constantine LJ, Hendren R, Rocke D, Ozonoff S (2009) Examining executive functioning in children with autism spectrum disorder, attention deficit hyperactivity disorder and typical development. Psychiatry Res 166(2–3):210–222. doi: 10.1016/j.psychres.2008.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hill EL (2004) Executive dysfunction in autism. Trends in cognitive sciences 8(1):26–32CrossRefPubMedGoogle Scholar
  5. 5.
    Pellicano E (2012) The development of executive function in autism. Autism research and treatment 2012:146132. doi: 10.1155/2012/146132 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Barnard L, Muldoon K, Hasan R, O’Brien G, Stewart M (2008) Profiling executive dysfunction in adults with autism and comorbid learning disability. Autism 12(2):125–141. doi: 10.1177/1362361307088486 CrossRefPubMedGoogle Scholar
  7. 7.
    Chen SF, Chien YL, Wu CT, Shang CY, Wu YY, Gau SS (2016) Deficits in executive functions among youths with autism spectrum disorders: an age-stratified analysis. Psychol Med 46(8):1625–1638. doi: 10.1017/s0033291715002238 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Minshew NJ, Goldstein G, Muenz LR, Payton JB (1992) Neuropsychological functioning in nonmentally retarded autistic individuals. J Clin Exp Neuropsychol 14(5):749–761. doi: 10.1080/01688639208402860 CrossRefPubMedGoogle Scholar
  9. 9.
    Ozonoff S, Cook I, Coon H, Dawson G, Joseph RM, Klin A, McMahon WM, Minshew N, Munson JA, Pennington BF, Rogers SJ, Spence MA, Tager-Flusberg H, Volkmar FR, Wrathall D (2004) Performance on Cambridge neuropsychological test automated battery subtests sensitive to frontal lobe function in people with autistic disorder: evidence from the collaborative programs of excellence in autism network. J Autism Dev Disord 34(2):139–150CrossRefPubMedGoogle Scholar
  10. 10.
    Craig F, Margari F, Legrottaglie AR, Palumbi R, de Giambattista C, Margari L (2016) A review of executive function deficits in autism spectrum disorder and attention-deficit/hyperactivity disorder. Neuropsychiatric disease and treatment 12:1191–1202. doi: 10.2147/NDT.S104620 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Andersen PN, Skogli EW, Hovik KT, Egeland J, Oie M (2015) Associations among symptoms of Autism, symptoms of depression and executive functions in children with high-functioning autism: a 2 year follow-up study. J Autism Dev Disord 45(8):2497–2507. doi: 10.1007/s10803-015-2415-8 CrossRefPubMedGoogle Scholar
  12. 12.
    van den Bergh SF, Scheeren AM, Begeer S, Koot HM, Geurts HM (2014) Age related differences of executive functioning problems in everyday life of children and adolescents in the autism spectrum. J Autism Dev Disord 44(8):1959–1971. doi: 10.1007/s10803-014-2071-4 CrossRefPubMedGoogle Scholar
  13. 13.
    Luna B, Doll SK, Hegedus SJ, Minshew NJ, Sweeney JA (2007) Maturation of executive function in autism. Biol Psychiat 61(4):474–481. doi: 10.1016/j.biopsych.2006.02.030 CrossRefPubMedGoogle Scholar
  14. 14.
    Robinson S, Goddard L, Dritschel B, Wisley M, Howlin P (2009) Executive functions in children with autism spectrum disorders. Brain Cogn 71(3):362–368. doi: 10.1016/j.bandc.2009.06.007 CrossRefPubMedGoogle Scholar
  15. 15.
    Ameis SH, Catani M (2015) Altered white matter connectivity as a neural substrate for social impairment in Autism Spectrum Disorder. Cortex 62:158–181. doi: 10.1016/j.cortex.2014.10.014 CrossRefPubMedGoogle Scholar
  16. 16.
    Aoki Y, Abe O, Nippashi Y, Yamasue H (2013) Comparison of white matter integrity between autism spectrum disorder subjects and typically developing individuals: a meta-analysis of diffusion tensor imaging tractography studies. Mol autism 4(1):25. doi: 10.1186/2040-2392-4-25 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Travers BG, Adluru N, Ennis C, do Tromp PM, Destiche D, Doran S, Bigler ED, Lange N, Lainhart JE, Alexander AL (2012) Diffusion tensor imaging in autism spectrum disorder: a review. Autism research : official journal of the International Society for Autism Research 5(5):289–313. doi: 10.1002/aur.1243 CrossRefGoogle Scholar
  18. 18.
    Baddeley A, Wilson B (1988) Frontal amnesia and the dysexecutive syndrome. Brain Cogn 7(2):212–230CrossRefPubMedGoogle Scholar
  19. 19.
    Stuss DT, Knight RT (2002) Principles of frontal lobe function. Oxford University Press., Oxford. doi: 10.1093/acprof:oso/9780195134971.001.0001
  20. 20.
    Monchi O, Petrides M, Strafella AP, Worsley KJ, Doyon J (2006) Functional role of the basal ganglia in the planning and execution of actions. Ann Neurol 59(2):257–264. doi: 10.1002/ana.20742 CrossRefPubMedGoogle Scholar
  21. 21.
    Pineda-Pardo JA, Martínez K, Román FJ, Colom R (2016) Structural efficiency within a parieto-frontal network and cognitive differences. Intelligence 54:105–116CrossRefGoogle Scholar
  22. 22.
    Hoppenbrouwers M, Vandermosten M, Boets B (2014) Autism as a disconnection syndrome: a qualitative and quantitative review of diffusion tensor imaging studies. Research in Autism Spectrum Disorders 8(4):387–412. doi: 10.1016/j.rasd.2013.12.018 CrossRefGoogle Scholar
  23. 23.
    Catani M, Dell’Acqua F, Budisavljevic S, Howells H, de Schotten MT, Froudist-Walsh S, D’Anna L, Thompson A, Sandrone S, Bullmore ET, Suckling J, Baron-Cohen S, Lombardo MV, Wheelwright SJ, Chakrabarti B, Chakrabarti B, Lai MC, Ruigrok AN, Leemans A, Ecker C, Consortium MA, Consortium MA, Craig MC, Murphy DG (2016) Frontal networks in adults with autism spectrum disorder. Brain 139(Pt 2):616–630. doi: 10.1093/brain/awv351 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lisiecka DM, Holt R, Tait R, Ford M, Lai MC, Chura LR, Baron-Cohen S, Spencer MD, Suckling J (2015) Developmental white matter microstructure in autism phenotype and corresponding endophenotype during adolescence. Translational psychiatry 5:e529. doi: 10.1038/tp.2015.23 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ben Bashat D, Kronfeld-Duenias V, Zachor DA, Ekstein PM, Hendler T, Tarrasch R, Even A, Levy Y, Ben Sira L (2007) Accelerated maturation of white matter in young children with autism: a high b value DWI study. NeuroImage 37(1):40–47. doi: 10.1016/j.neuroimage.2007.04.060 CrossRefPubMedGoogle Scholar
  26. 26.
    Weinstein M, Ben-Sira L, Levy Y, Zachor DA, Ben Itzhak E, Artzi M, Tarrasch R, Eksteine PM, Hendler T, Ben Bashat D (2011) Abnormal white matter integrity in young children with autism. Hum Brain Mapp 32(4):534–543. doi: 10.1002/hbm.21042 CrossRefPubMedGoogle Scholar
  27. 27.
    Wolff JJ, Gu H, Gerig G, Elison JT, Styner M, Gouttard S, Botteron KN, Dager SR, Dawson G, Estes AM, Evans AC, Hazlett HC, Kostopoulos P, McKinstry RC, Paterson SJ, Schultz RT, Zwaigenbaum L, Piven J (2012) Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. Am J Psychiatr 169(6):589–600. doi: 10.1176/appi.ajp.2011.11091447 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C (2008) Microstructural maturation of the human brain from childhood to adulthood. NeuroImage 40(3):1044–1055. doi: 10.1016/j.neuroimage.2007.12.053 CrossRefPubMedGoogle Scholar
  29. 29.
    Conti E, Calderoni S, Marchi V, Muratori F, Cioni G, Guzzetta A (2015) The first 1000 days of the autistic brain: a systematic review of diffusion imaging studies. Front Hum Neurosci 9:159. doi: 10.3389/fnhum.2015.00159 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ecker C, Bookheimer SY, Murphy DG (2015) Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurol 14(11):1121–1134. doi: 10.1016/S1474-4422(15)00050-2 CrossRefPubMedGoogle Scholar
  31. 31.
    Solso S, Xu R, Proudfoot J, Hagler DJ Jr, Campbell K, Venkatraman V, Carter Barnes C, Ahrens-Barbeau C, Pierce K, Dale A, Eyler L, Courchesne E (2016) Diffusion tensor imaging provides evidence of possible axonal overconnectivity in frontal lobes in autism spectrum disorder toddlers. Biol Psychiat 79(8):676–684. doi: 10.1016/j.biopsych.2015.06.029 CrossRefPubMedGoogle Scholar
  32. 32.
    Alexander AL, Lee JE, Lazar M, Boudos R, DuBray MB, Oakes TR, Miller JN, Lu J, Jeong EK, McMahon WM, Bigler ED, Lainhart JE (2007) Diffusion tensor imaging of the corpus callosum in Autism. NeuroImage 34(1):61–73. doi: 10.1016/j.neuroimage.2006.08.032 CrossRefPubMedGoogle Scholar
  33. 33.
    Ellmore TM, Li H, Xue Z, Wong ST, Frye RE (2013) Tract-based spatial statistics reveal altered relationship between non-verbal reasoning abilities and white matter integrity in autism spectrum disorder. J Int Neuropsychol Soc 19(6):723–728. doi: 10.1017/s1355617713000325 CrossRefPubMedGoogle Scholar
  34. 34.
    Fletcher PT, Whitaker RT, Tao R, DuBray MB, Froehlich A, Ravichandran C, Alexander AL, Bigler ED, Lange N, Lainhart JE (2010) Microstructural connectivity of the arcuate fasciculus in adolescents with high-functioning autism. NeuroImage 51(3):1117–1125. doi: 10.1016/j.neuroimage.2010.01.083 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Joseph RM, Fricker Z, Fenoglio A, Lindgren KA, Knaus TA, Tager-Flusberg H (2014) Structural asymmetries of language-related gray and white matter and their relationship to language function in young children with ASD. Brain imaging and behavior 8(1):60–72. doi: 10.1007/s11682-013-9245-0 CrossRefPubMedGoogle Scholar
  36. 36.
    Langen M, Leemans A, Johnston P, Ecker C, Daly E, Murphy CM, Dell’acqua F, Durston S, Murphy DG (2012) Fronto-striatal circuitry and inhibitory control in autism: findings from diffusion tensor imaging tractography. Cortex 48(2):183–193. doi: 10.1016/j.cortex.2011.05.018 CrossRefPubMedGoogle Scholar
  37. 37.
    Lazar M, Miles LM, Babb JS, Donaldson JB (2014) Axonal deficits in young adults with High Functioning Autism and their impact on processing speed. NeuroImage Clinic 4:417–425. doi: 10.1016/j.nicl.2014.01.014 CrossRefGoogle Scholar
  38. 38.
    Nagae LM, Zarnow DM, Blaskey L, Dell J, Khan SY, Qasmieh S, Levy SE, Roberts TP (2012) Elevated mean diffusivity in the left hemisphere superior longitudinal fasciculus in autism spectrum disorders increases with more profound language impairment. Am J Neuroradiol 33(9):1720–1725. doi: 10.3174/ajnr.A3037 CrossRefPubMedGoogle Scholar
  39. 39.
    Sahyoun CP, Belliveau JW, Mody M (2010) White matter integrity and pictorial reasoning in high-functioning children with autism. Brain Cogn 73(3):180–188. doi: 10.1016/j.bandc.2010.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hollingshead AB, Rendlich (1958) Social class and mental illness. John Wiley, New York, pp 387–397CrossRefGoogle Scholar
  41. 41.
    Buchanan RW, Heinrichs DW (1989) The Neurological Evaluation Scale (NES): a structured instrument for the assessment of neurological signs in schizophrenia. Psychiatry Res 27(3):335–350. doi: 10.1016/0165-1781(89)90148-0 CrossRefPubMedGoogle Scholar
  42. 42.
    Parellada M, Moreno C, Moreno M, Espliego A, de Portugal E, Arango C (2012) Placebo effect in child and adolescent psychiatric trials. Eur Neuropsychopharmacol 22(11):787–799. doi: 10.1016/j.euroneuro.2011.09.007 (S0924-977X(11)00258-6 [pii]) CrossRefPubMedGoogle Scholar
  43. 43.
    Volkmar F, Siegel M, Woodbury-Smith M, King B, McCracken J, State M (2014) Practice parameter for the assessment and treatment of children and adolescents with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry 53(2):237–257. doi: 10.1016/j.jaac.2013.10.013 (S0890-8567(13)00819-8 [pii]) CrossRefPubMedGoogle Scholar
  44. 44.
    Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M (2000) The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30(3):205–223CrossRefPubMedGoogle Scholar
  45. 45.
    Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, Williamson D, Ryan N (1997) Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 36(7):980–988. doi: 10.1097/00004583-199707000-00021 (S0890-8567(09)62555-7 [pii]) CrossRefPubMedGoogle Scholar
  46. 46.
    Merchan-Naranjo J, Mayoral M, Rapado-Castro M, Llorente C, Boada L, Arango C, Parellada M (2012) Estimation of the intelligence quotient using Wechsler Intelligence Scales in children and adolescents with Asperger syndrome. J Autism Dev Disord 42(1):116–122. doi: 10.1007/s10803-011-1219-8 CrossRefPubMedGoogle Scholar
  47. 47.
    Wechsler D (1997) Weschler Adult Intelligence Scale, 3rd edn. Harcourt Assessment, San AntonioGoogle Scholar
  48. 48.
    Wechsler D (2003) WISC-IV technical and interpretive manual. Psychological Corporation, SanAntonioGoogle Scholar
  49. 49.
    Satler JM (2001) Assessment of children cognitive applications, 4th edn. Publisher Inc, San Diego State UniversityGoogle Scholar
  50. 50.
    Andreasen NC, Pressler M, Nopoulos P, Miller D, Ho BC (2010) Antipsychotic dose equivalents and dose-years: a standardized method for comparing exposure to different drugs. Biol Psychiatry 67(3):255–262. doi: 10.1016/j.biopsych.2009.08.040 (S0006-3223(09)01125-1 [pii]) CrossRefPubMedGoogle Scholar
  51. 51.
    Rijcken CA, Monster TB, Brouwers JR, de Jong-van den Berg LT (2003) Chlorpromazine equivalents versus defined daily doses: how to compare antipsychotic drug doses? J Clin Psychopharmacol 23(6):657–659. doi: 10.1097/ (00004714-200312000-00015 [pii]) CrossRefPubMedGoogle Scholar
  52. 52.
    Bos DJ, Merchan-Naranjo J, Martinez K, Pina-Camacho L, Balsa I, Boada L, Schnack H, Oranje B, Desco M, Arango C, Parellada M, Durston S, Janssen J (2015) Reduced gyrification is related to reduced interhemispheric connectivity in autism spectrum disorders. J Am Acad Child Adolesc Psychiatry 54(8):668–676. doi: 10.1016/j.jaac.2015.05.011 CrossRefPubMedGoogle Scholar
  53. 53.
    Yendiki A, Panneck P, Srinivasan P, Stevens A, Zollei L, Augustinack J, Wang R, Salat D, Ehrlich S, Behrens T, Jbabdi S, Gollub R, Fischl B (2011) Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Front Neuroinform 5:23. doi: 10.3389/fninf.2011.00023 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    West SG, Finch JF, Curran PJ (1995) Structural equation models with non-normal variables: problems and remedies. Structural equation modeling. Concepts, issues, and applications, Sage, Thousand OaksGoogle Scholar
  55. 55.
    Russel D (2002) In search of underlying dimensions: the use (and abuse) of factor analysis. Pers Soc Psychol Bull 28:1629–1646CrossRefGoogle Scholar
  56. 56.
    Adèr HJ, Mellenbergh GJ, Hand DJ (2008) Advising on research methods: A consultant’s companion. Johannes van Kessel Publishing, HuizenGoogle Scholar
  57. 57.
    Lezak M (1995) Neuropsychological assessment (3rd edn) New York: Oxford University PressGoogle Scholar
  58. 58.
    Courchesne E, Townsend J, Akshoomoff NA, Saitoh O, Yeung-Courchesne R, Lincoln AJ, James HE, Haas RH, Schreibman L, Lau L (1994) Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci 108(5):848–865CrossRefPubMedGoogle Scholar
  59. 59.
    Noterdaeme M, Mildenberger K, Minow F, Amorosa H (2002) Evaluation of neuromotor deficits in children with autism and children with a specific speech and language disorder. Eur Child Adolesc Psychiatry 11(5):219–225. doi: 10.1007/s00787-002-0285-z CrossRefPubMedGoogle Scholar
  60. 60.
    Brian JA, Tipper SP, Weaver B, Bryson SE (2003) Inhibitory mechanisms in autism spectrum disorders: typical selective inhibition of location versus facilitated perceptual processing. J Child Psychol Psychiatry 44(4):552–560CrossRefPubMedGoogle Scholar
  61. 61.
    Ozonoff S, Jensen J (1999) Brief report: specific executive function profiles in three neurodevelopmental disorders. J Autism Dev Disord 29(2):171–177CrossRefPubMedGoogle Scholar
  62. 62.
    Happe F, Booth R, Charlton R, Hughes C (2006) Executive function deficits in autism spectrum disorders and attention-deficit/hyperactivity disorder: examining profiles across domains and ages. Brain Cogn 61(1):25–39. doi: 10.1016/j.bandc.2006.03.004 CrossRefPubMedGoogle Scholar
  63. 63.
    Ozonoff S, McEvoy RE (1994) A longitudinal study of executive function and theory of mind development in autism. Dev Psychopathol 6(03):415–431. doi: 10.1017/S0954579400006027 CrossRefGoogle Scholar
  64. 64.
    Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson Ser B 111(3):209–219CrossRefGoogle Scholar
  65. 65.
    Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15(7–8):435–455. doi: 10.1002/nbm.782 CrossRefPubMedGoogle Scholar
  66. 66.
    Brito AR, Vasconcelos MM, Domingues RC, Hygino da Cruz LC, Lde Rodrigues S Jr, Gasparetto EL, Calcada CA (2009) Diffusion tensor imaging findings in school-aged autistic children. J Neuroimaging 19(4):337–343. doi: 10.1111/j.1552-6569.2009.00366.x CrossRefPubMedGoogle Scholar
  67. 67.
    Catani M, Mesulam M (2008) The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex 44(8):953–961. doi: 10.1016/j.cortex.2008.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Cheon KA, Kim YS, Oh SH, Park SY, Yoon HW, Herrington J, Nair A, Koh YJ, Jang DP, Kim YB, Leventhal BL, Cho ZH, Castellanos FX, Schultz RT (2011) Involvement of the anterior thalamic radiation in boys with high functioning autism spectrum disorders: a diffusion tensor imaging study. Brain Res 1417:77–86. doi: 10.1016/j.brainres.2011.08.020 CrossRefPubMedGoogle Scholar
  69. 69.
    Walker L, Gozzi M, Lenroot R, Thurm A, Behseta B, Swedo S, Pierpaoli C (2012) Diffusion tensor imaging in young children with autism: biological effects and potential confounds. Biol Psychiat 72(12):1043–1051. doi: 10.1016/j.biopsych.2012.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Cheng Y, Chou KH, Chen IY, Fan YT, Decety J, Lin CP (2010) Atypical development of white matter microstructure in adolescents with autism spectrum disorders. NeuroImage 50(3):873–882. doi: 10.1016/j.neuroimage.2010.01.011 CrossRefPubMedGoogle Scholar
  71. 71.
    Wolff JJ, Gerig G, Lewis JD, Soda T, Styner MA, Vachet C, Botteron KN, Elison JT, Dager SR, Estes AM, Hazlett HC, Schultz RT, Zwaigenbaum L, Piven J (2015) Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain 138(Pt 7):2046–2058. doi: 10.1093/brain/awv118 (awv118 [pii]) CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Keller TA, Kana RK, Just MA (2007) A developmental study of the structural integrity of white matter in autism. NeuroReport 18(1):23–27. doi: 10.1097/01.wnr.0000239965.21685.99 CrossRefPubMedGoogle Scholar
  73. 73.
    Pugliese L, Catani M, Ameis S, Dell’Acqua F, Thiebaut de Schotten M, Murphy C, Robertson D, Deeley Q, Daly E, Murphy DG (2009) The anatomy of extended limbic pathways in Asperger syndrome: a preliminary diffusion tensor imaging tractography study. NeuroImage 47(2):427–434. doi: 10.1016/j.neuroimage.2009.05.014 CrossRefPubMedGoogle Scholar
  74. 74.
    Ikuta T, Shafritz KM, Bregman J, Peters BD, Gruner P, Malhotra AK, Szeszko PR (2014) Abnormal cingulum bundle development in autism: a probabilistic tractography study. Psychiatry Res 221(1):63–68. doi: 10.1016/j.pscychresns.2013.08.002 CrossRefPubMedGoogle Scholar
  75. 75.
    Courchesne E, Campbell K, Solso S (2011) Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res 1380:138–145. doi: 10.1016/j.brainres.2010.09.101 CrossRefPubMedGoogle Scholar
  76. 76.
    Goldman-Rakic PS (1988) Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci 11:137–156. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  77. 77.
    Baird AA, Colvin MK, Vanhorn JD, Inati S, Gazzaniga MS (2005) Functional connectivity: integrating behavioral, diffusion tensor imaging, and functional magnetic resonance imaging data sets. J Cogn Neurosci 17(4):687–693. doi: 10.1162/0898929053467569 CrossRefPubMedGoogle Scholar
  78. 78.
    Charlton RA, Barrick TR, Markus HS, Morris RG (2010) The relationship between episodic long-term memory and white matter integrity in normal aging. Neuropsychologia 48(1):114–122. doi: 10.1016/j.neuropsychologia.2009.08.018 CrossRefPubMedGoogle Scholar
  79. 79.
    Chiang MC, Barysheva M, Shattuck DW, Lee AD, Madsen SK, Avedissian C, Klunder AD, Toga AW, McMahon KL, de Zubicaray GI, Wright MJ, Srivastava A, Balov N, Thompson PM (2009) Genetics of brain fiber architecture and intellectual performance. J Neurosci 29(7):2212–2224. doi: 10.1523/JNEUROSCI.4184-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Nagy Z, Westerberg H, Klingberg T (2004) Maturation of white matter is associated with the development of cognitive functions during childhood. J Cogn Neurosci 16(7):1227–1233. doi: 10.1162/0898929041920441 CrossRefPubMedGoogle Scholar
  81. 81.
    Yu C, Li J, Liu Y, Qin W, Li Y, Shu N, Jiang T, Li K (2008) White matter tract integrity and intelligence in patients with mental retardation and healthy adults. NeuroImage 40(4):1533–1541. doi: 10.1016/j.neuroimage.2008.01.063 CrossRefPubMedGoogle Scholar
  82. 82.
    Martinez K, Madsen SK, Joshi AA, Joshi SH, Roman FJ, Villalon-Reina J, Burgaleta M, Karama S, Janssen J, Marinetto E, Desco M, Thompson PM, Colom R (2015) Reproducibility of brain-cognition relationships using three cortical surface-based protocols: an exhaustive analysis based on cortical thickness. Hum Brain Mapp 36(8):3227–3245. doi: 10.1002/hbm.22843 CrossRefPubMedGoogle Scholar
  83. 83.
    Just MA, Cherkassky VL, Keller TA, Minshew NJ (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127(Pt 8):1811–1821. doi: 10.1093/brain/awh199 (awh199 [pii]) CrossRefPubMedGoogle Scholar
  84. 84.
    Kana RK, Keller TA, Minshew NJ, Just MA (2007) Inhibitory control in high-functioning autism: decreased activation and underconnectivity in inhibition networks. Biol Psychiatry 62(3):198–206. doi: 10.1016/j.biopsych.2006.08.004 (S0006-3223(06)01004-3 [pii]) CrossRefPubMedGoogle Scholar
  85. 85.
    Travers BG, Bigler ED, do Tromp PM, Adluru N, Froehlich AL, Ennis C, Lange N, Nielsen JA, Prigge MB, Alexander AL, Lainhart JE (2014) Longitudinal processing speed impairments in males with autism and the effects of white matter microstructure. Neuropsychologia 53:137–145. doi: 10.1016/j.neuropsychologia.2013.11.008 CrossRefPubMedGoogle Scholar
  86. 86.
    Treit S, Chen Z, Rasmussen C, Beaulieu C (2014) White matter correlates of cognitive inhibition during development: a diffusion tensor imaging study. Neuroscience 276:87–97. doi: 10.1016/j.neuroscience.2013.12.019 CrossRefPubMedGoogle Scholar
  87. 87.
    Jacobs HI, Leritz EC, Williams VJ, Van Boxtel MP, van der Elst W, Jolles J, Verhey FR, McGlinchey RE, Milberg WP, Salat DH (2013) Association between white matter microstructure, executive functions, and processing speed in older adults: the impact of vascular health. Hum Brain Mapp 34(1):77–95. doi: 10.1002/hbm.21412 CrossRefPubMedGoogle Scholar
  88. 88.
    Hanaie R, Mohri I, Kagitani-Shimono K, Tachibana M, Matsuzaki J, Watanabe Y, Fujita N, Taniike M (2014) Abnormal corpus callosum connectivity, socio-communicative deficits, and motor deficits in children with autism spectrum disorder: a diffusion tensor imaging study. J Autism Dev Disord 44(9):2209–2220. doi: 10.1007/s10803-014-2096-8 CrossRefPubMedGoogle Scholar
  89. 89.
    Schaer M, Ottet MC, Scariati E, Dukes D, Franchini M, Eliez S, Glaser B (2013) Decreased frontal gyrification correlates with altered connectivity in children with autism. Front Hum Neurosci 7:750. doi: 10.3389/fnhum.2013.00750 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Thomas C, Humphreys K, Jung KJ, Minshew N, Behrmann M (2011) The anatomy of the callosal and visual-association pathways in high-functioning autism: a DTI tractography study. Cortex 47(7):863–873. doi: 10.1016/j.cortex.2010.07.006 CrossRefPubMedGoogle Scholar
  91. 91.
    Paul LK, Corsello C, Kennedy DP, Adolphs R (2014) Agenesis of the corpus callosum and autism: a comprehensive comparison. Brain 137(Pt 6):1813–1829. doi: 10.1093/brain/awu070 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Badaruddin DH, Andrews GL, Bolte S, Schilmoeller KJ, Schilmoeller G, Paul LK, Brown WS (2007) Social and behavioral problems of children with agenesis of the corpus callosum. Child Psychiatry Hum Dev 38(4):287–302. doi: 10.1007/s10578-007-0065-6 CrossRefPubMedGoogle Scholar
  93. 93.
    Brown LN, Sainsbury RS (2000) Hemispheric equivalence and age-related differences in judgments of simultaneity to somatosensory stimuli. J Clin Exp Neuropsychol 22(5):587–598. doi: 10.1076/1380-3395(200010)22:5;1-9;FT587 CrossRefPubMedGoogle Scholar
  94. 94.
    David AS, Wacharasindhu A, Lishman WA (1993) Severe psychiatric disturbance and abnormalities of the corpus callosum: review and case series. J Neurol Neurosurg Psychiatry 56(1):85–93CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Nair A, Treiber JM, Shukla DK, Shih P, Muller RA (2013) Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity. Brain 136(Pt 6):1942–1955. doi: 10.1093/brain/awt079 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44(8):1105–1132. doi: 10.1016/j.cortex.2008.05.004 CrossRefPubMedGoogle Scholar
  97. 97.
    Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage 17(1):77–94CrossRefPubMedGoogle Scholar
  98. 98.
    Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ, Wedeen VJ (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130(Pt 3):630–653. doi: 10.1093/brain/awl359 CrossRefPubMedGoogle Scholar
  99. 99.
    Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD, Menon V (2010) Development of functional and structural connectivity within the default mode network in young children. NeuroImage 52(1):290–301. doi: 10.1016/j.neuroimage.2010.04.009 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Kenia Martínez
    • 1
    • 2
    • 3
    • 4
    • 8
    Email author
  • Jessica Merchán-Naranjo
    • 1
    • 2
    • 3
  • Laura Pina-Camacho
    • 1
    • 2
    • 3
    • 5
  • Yasser Alemán-Gómez
    • 2
    • 3
  • Leticia Boada
    • 1
    • 2
    • 3
  • David Fraguas
    • 1
    • 2
    • 3
  • Carmen Moreno
    • 1
    • 2
    • 3
  • Celso Arango
    • 1
    • 2
    • 3
    • 6
  • Joost Janssen
    • 1
    • 2
    • 3
    • 7
  • Mara Parellada
    • 1
    • 2
    • 3
    • 6
  1. 1.Department of Child and Adolescent PsychiatryHospital General Universitario Gregorio MarañónMadridSpain
  2. 2.Instituto de Investigación Sanitaria Gregorio Marañón (IISGM)MadridSpain
  3. 3.Ciber del área de Salud Mental (CIBERSAM)MadridSpain
  4. 4.Universidad Europea de MadridMadridSpain
  5. 5.Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUnited Kingdom
  6. 6.Universidad Complutense de MadridMadridSpain
  7. 7.Department of Psychiatry, Brain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
  8. 8.Hospital Gregorio Marañón, Edificio prefabricadoMadridSpain

Personalised recommendations