Advertisement

European Child & Adolescent Psychiatry

, Volume 26, Issue 8, pp 933–945 | Cite as

Gray matter abnormalities in pediatric autism spectrum disorder: a meta-analysis with signed differential mapping

  • Jieke Liu
  • Li Yao
  • Wenjing Zhang
  • Yuan Xiao
  • Lu Liu
  • Xin Gao
  • Chandan Shah
  • Siyi Li
  • Bo Tao
  • Qiyong Gong
  • Su LuiEmail author
Original Contribution

Abstract

The gray matter abnormalities revealed by magnetic resonance imaging are inconsistent, especially in pediatric individuals with autism spectrum disorder (ASD) (age < 18 years old), a phenomenon possibly related to the core pathophysiology of ASD. The purpose of our meta-analysis was to identify and map the specific gray matter abnormalities in pediatric ASD individuals thereby exploring the potential effects of clinical and demographic characteristics of these gray matter changes. A systematic search was conducted to identify voxel-based morphometry studies in pediatric individuals with ASD. The effect-size signed differential mapping method was used to quantitatively estimate the regional gray matter abnormalities in pediatric ASD individuals. Meta-regression was used to examine the associations among age, gender, intelligence quotient, symptom severity and gray matter changes. Fifteen studies including 364 pediatric individuals with ASD (male = 282, age = 10.3 ± 4.4 years) and 377 healthy controls (male = 289, age = 10.5 ± 4.2 years) were included. Pediatric ASD individuals showed significant gray matter increases in the right angular gyrus, left superior and middle frontal gyrus, left precuneus, left inferior occipital gyrus and right inferior temporal gyrus, most of which involving the default mode network, and decreases in the left cerebellum and left postcentral gyrus. The meta-regression analysis showed that the repetitive behavior scores of the Autism Diagnostic Interview-Revised were positively associated with increased gray matter volumes in the right angular gyrus. Increased rather than decreased gray matter volume, especially involving the angular gyrus and prefrontal cortex may be the core pathophysiology in the early course of ASD.

Keywords

Autism spectrum disorder Pediatrics Structural MRI Gray matter Meta-analysis Signed differential mapping 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Numbers 81371527, 81671664, 81621003), Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, Grant Number IRT16R52) of China. Dr. Lui would also like to acknowledge the support from Chang Jiang Scholars of China (Award Numbers Q2015154), National Program for Special Support of Eminent Professionals and National Program for Support of Top-notch Young Investigator (Award Numbers W02070140).

Compliance with ethical standards

Conflict of interest

None of the authors has potential conflicts of interest to report with regard to this manuscript.

References

  1. 1.
    Christensen DL, Baio J, Van Naarden Braun K, Bilder D, Charles J, Constantino JN, Daniels J, Durkin MS, Fitzgerald RT, Kurzius-Spencer M, Lee LC, Pettygrove S, Robinson C, Schulz E, Wells C, Wingate MS, Zahorodny W, Yeargin-Allsopp M (2016) Prevalence and characteristics of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Surveill Summ 65:1–23CrossRefPubMedGoogle Scholar
  2. 2.
    Lai MC, Lombardo MV, Baron-Cohen S (2014) Autism. Lancet 383:896–910CrossRefPubMedGoogle Scholar
  3. 3.
    Lainhart JE (2015) Brain imaging research in autism spectrum disorders: in search of neuropathology and health across the lifespan. Curr Opin Psychiatry 28:76–82PubMedPubMedCentralGoogle Scholar
  4. 4.
    Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, Giedd JN, Munson J, Dawson G, Dager SR (2002) Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59:184–192CrossRefPubMedGoogle Scholar
  5. 5.
    Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, Lammers CR, Reiss AL, Amaral DG (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 24:6392–6401CrossRefPubMedGoogle Scholar
  6. 6.
    Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP, Morgan J (2007) Mapping early brain development in autism. Neuron 56:399–413CrossRefPubMedGoogle Scholar
  7. 7.
    Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, Barnes CC, Pierce K (2011) Neuron number and size in prefrontal cortex of children with autism. JAMA 306:2001–2010CrossRefPubMedGoogle Scholar
  8. 8.
    Ecker C, Rocha-Rego V, Johnston P, Mourao-Miranda J, Marquand A, Daly EM, Brammer MJ, Murphy C, Murphy DG (2010) Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. Neuroimage 49:44–56CrossRefPubMedGoogle Scholar
  9. 9.
    Via E, Radua J, Cardoner N, Happe F, Mataix-Cols D (2011) Meta-analysis of gray matter abnormalities in autism spectrum disorder: should Asperger disorder be subsumed under a broader umbrella of autistic spectrum disorder? Arch Gen Psychiatry 68:409–418CrossRefPubMedGoogle Scholar
  10. 10.
    Cauda F, Geda E, Sacco K, D’Agata F, Duca S, Geminiani G, Keller R (2011) Grey matter abnormality in autism spectrum disorder: an activation likelihood estimation meta-analysis study. J Neurol Neurosurg Psychiatry 82:1304–1313CrossRefPubMedGoogle Scholar
  11. 11.
    Yu KK, Cheung C, Chua SE, McAlonan GM (2011) Can Asperger syndrome be distinguished from autism? An anatomic likelihood meta-analysis of MRI studies. J Psychiatry Neurosci 36:412–421CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nickl-Jockschat T, Habel U, Michel TM, Manning J, Laird AR, Fox PT, Schneider F, Eickhoff SB (2012) Brain structure anomalies in autism spectrum disorder—a meta-analysis of VBM studies using anatomic likelihood estimation. Hum Brain Mapp 33:1470–1489CrossRefPubMedGoogle Scholar
  13. 13.
    DeRamus TP, Kana RK (2015) Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders. Neuroimage Clin 7:525–536CrossRefPubMedGoogle Scholar
  14. 14.
    Cheng Y, Chou KH, Fan YT, Lin CP (2011) ANS: aberrant neurodevelopment of the social cognition network in adolescents with autism spectrum disorders. PLoS ONE 6:e18905CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Riva D, Annunziata S, Contarino V, Erbetta A, Aquino D, Bulgheroni S (2013) Gray matter reduction in the vermis and CRUS-II is associated with social and interaction deficits in low-functioning children with autistic spectrum disorders: a VBM-DARTEL Study. Cerebellum 12:676–685CrossRefPubMedGoogle Scholar
  16. 16.
    Foster NE, Doyle-Thomas KA, Tryfon A, Ouimet T, Anagnostou E, Evans AC, Zwaigenbaum L, Lerch JP, Lewis JD, Hyde KL (2015) Structural gray matter differences during childhood development in autism spectrum disorder: a multimetric approach. Pediatr Neurol 53:350–359CrossRefPubMedGoogle Scholar
  17. 17.
    Kaufmann L, Zotter S, Pixner S, Starke M, Haberlandt E, Steinmayr-Gensluckner M, Egger K, Schocke M, Weiss EM, Marksteiner J (2013) Brief report: CANTAB performance and brain structure in pediatric patients with Asperger syndrome. J Autism Dev Disord 43:1483–1490CrossRefPubMedGoogle Scholar
  18. 18.
    Duerden EG, Mak-Fan KM, Taylor MJ, Roberts SW (2012) Regional differences in grey and white matter in children and adults with autism spectrum disorders: an activation likelihood estimate (ALE) meta-analysis. Autism Res 5:49–66CrossRefPubMedGoogle Scholar
  19. 19.
    Bora E, Fornito A, Yucel M, Pantelis C (2010) Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biol Psychiatry 67:1097–1105CrossRefPubMedGoogle Scholar
  20. 20.
    Lansley J, Mataix-Cols D, Grau M, Radua J, Sastre-Garriga J (2013) Localized grey matter atrophy in multiple sclerosis: a meta-analysis of voxel-based morphometry studies and associations with functional disability. Neurosci Biobehav Rev 37:819–830CrossRefPubMedGoogle Scholar
  21. 21.
    Nakao T, Radua J, Rubia K, Mataix-Cols D (2011) Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am J Psychiatry 168:1154–1163CrossRefPubMedGoogle Scholar
  22. 22.
    Radua J, van den Heuvel OA, Surguladze S, Mataix-Cols D (2010) Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders. Arch Gen Psychiatry 67:701–711CrossRefPubMedGoogle Scholar
  23. 23.
    Radua J, Borgwardt S, Crescini A, Mataix-Cols D, Meyer-Lindenberg A, McGuire PK, Fusar-Poli P (2012) Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication. Neurosci Biobehav Rev 36:2325–2333CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang H, Li L, Wu M, Chen Z, Hu X, Chen Y, Zhu H, Jia Z, Gong Q (2016) Brain gray matter alterations in first episodes of depression: a meta-analysis of whole-brain studies. Neurosci Biobehav Rev 60:43–50CrossRefPubMedGoogle Scholar
  25. 25.
    Radua J, Mataix-Cols D, Phillips ML, El-Hage W, Kronhaus DM, Cardoner N, Surguladze S (2012) A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. Eur Psychiatry 27:605–611CrossRefPubMedGoogle Scholar
  26. 26.
    Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16:765–780CrossRefPubMedGoogle Scholar
  27. 27.
    Wager TD, Lindquist M, Kaplan L (2007) Meta-analysis of functional neuroimaging data: current and future directions. Soc Cogn Affect Neurosci 2:150–158CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Moher D, Liberati A, Tetzlaff J, Altman DG (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8:336–341CrossRefPubMedGoogle Scholar
  29. 29.
    Lord C, Rutter M, Le Couteur A (1994) Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 24:659–685CrossRefPubMedGoogle Scholar
  30. 30.
    Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M (2000) The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30:205–223CrossRefPubMedGoogle Scholar
  31. 31.
    Viechtbauer W (2005) Bias and efficiency of meta-analytic variance estimators in the random-effects model. J Educ Behav Stat 30:261–293CrossRefGoogle Scholar
  32. 32.
    Radua J, Mataix-Cols D (2009) Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. Br J Psychiatry 195:393–402CrossRefPubMedGoogle Scholar
  33. 33.
    Friston KJ, Rotshtein P, Geng JJ, Sterzer P, Henson RN (2006) A critique of functional localisers. Neuroimage 30:1077–1087CrossRefPubMedGoogle Scholar
  34. 34.
    Lancaster JL, Tordesillas-Gutierrez D, Martinez M, Salinas F, Evans A, Zilles K, Mazziotta JC, Fox PT (2007) Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Mapp 28:1194–1205CrossRefPubMedGoogle Scholar
  35. 35.
    Taki Y, Hashizume H, Sassa Y, Takeuchi H, Asano M, Asano K, Kotozaki Y, Nouchi R, Wu K, Fukuda H, Kawashima R (2012) Correlation among body height, intelligence, and brain gray matter volume in healthy children. Neuroimage 59:1023–1027CrossRefPubMedGoogle Scholar
  36. 36.
    Salmond CH, Ashburner J, Connelly A, Friston KJ, Gadian DG, Vargha-Khadem F (2005) The role of the medial temporal lobe in autistic spectrum disorders. Eur J Neurosci 22:764–772CrossRefPubMedGoogle Scholar
  37. 37.
    Salmond CH, Vargha-Khadem F, Gadian DG, de Haan M, Baldeweg T (2007) Heterogeneity in the patterns of neural abnormality in autistic spectrum disorders: evidence from ERP and MRI. Cortex 43:686–699CrossRefPubMedGoogle Scholar
  38. 38.
    Spencer MD, Moorhead TW, Lymer GK, Job DE, Muir WJ, Hoare P, Owens DG, Lawrie SM, Johnstone EC (2006) Structural correlates of intellectual impairment and autistic features in adolescents. Neuroimage 33:1136–1144CrossRefPubMedGoogle Scholar
  39. 39.
    Freitag CM, Konrad C, Haberlen M, Kleser C, von Gontard A, Reith W, Troje NF, Krick C (2008) Perception of biological motion in autism spectrum disorders. Neuropsychologia 46:1480–1494CrossRefPubMedGoogle Scholar
  40. 40.
    Hardan AY, Yorbik O, Minshew NJ, Diwadkar VA, Keshavan MS (2003) Voxel-based morphometry study of gray matter in Asperger’s disorder [SOBP Annual Meeting, abstract 597]. Biol Psychiatry 53:211–212CrossRefGoogle Scholar
  41. 41.
    Xiao Z, Qiu T, Ke X, Xiao X, Xiao T, Liang F, Zou B, Huang H, Fang H, Chu K, Zhang J, Liu Y (2014) Autism spectrum disorder as early neurodevelopmental disorder: evidence from the brain imaging abnormalities in 2–3 years old toddlers. J Autism Dev Disord 44:1633–1640CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    McAlonan GM, Cheung V, Cheung C, Suckling J, Lam GY, Tai KS, Yip L, Murphy DG, Chua SE (2005) Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain 128:268–276CrossRefPubMedGoogle Scholar
  43. 43.
    Uddin LQ, Menon V, Young CB, Ryali S, Chen T, Khouzam A, Minshew NJ, Hardan AY (2011) Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism. Biol Psychiatry 70:833–841CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Langen M, Schnack HG, Nederveen H, Bos D, Lahuis BE, de Jonge MV, van Engeland H, Durston S (2009) Changes in the developmental trajectories of striatum in autism. Biol Psychiatry 66:327–333CrossRefPubMedGoogle Scholar
  45. 45.
    Steinman K, Lotspeich L, Patnaik S, Hoefr F, Reiss A (2008) Structural brain differences between autistic children and their typically-developing siblings: a voxelbased morphometry analysis [ANA Annual Meeting abstract poster CD34]. Ann Neurol 64:S155Google Scholar
  46. 46.
    Boddaert N, Chabane N, Gervais H, Good CD, Bourgeois M, Plumet MH, Barthelemy C, Mouren MC, Artiges E, Samson Y, Brunelle F, Frackowiak RS, Zilbovicius M (2004) Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage 23:364–369CrossRefPubMedGoogle Scholar
  47. 47.
    Bonilha L, Cendes F, Rorden C, Eckert M, Dalgalarrondo P, Li LM, Steiner CE (2008) Gray and white matter imbalance—typical structural abnormality underlying classic autism? Brain Dev 30:396–401CrossRefPubMedGoogle Scholar
  48. 48.
    Brieber S, Neufang S, Bruning N, Kamp-Becker I, Remschmidt H, Herpertz-Dahlmann B, Fink GR, Konrad K (2007) Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder. J Child Psychol Psychiatry 48:1251–1258CrossRefPubMedGoogle Scholar
  49. 49.
    Calderoni S, Retico A, Biagi L, Tancredi R, Muratori F, Tosetti M (2012) Female children with autism spectrum disorder: an insight from mass-univariate and pattern classification analyses. Neuroimage 59:1013–1022CrossRefPubMedGoogle Scholar
  50. 50.
    Ke X, Hong S, Tang T, Zou B, Li H, Hang Y, Zhou Z, Ruan Z, Lu Z, Tao G, Liu Y (2008) Voxel-based morphometry study on brain structure in children with high-functioning autism. Neuroreport 19:921–925CrossRefPubMedGoogle Scholar
  51. 51.
    Kurth F, Narr KL, Woods RP, O’Neill J, Alger JR, Caplan R, McCracken JT, Toga AW, Levitt JG (2011) Diminished gray matter within the hypothalamus in autism disorder: a potential link to hormonal effects? Biol Psychiatry 70:278–282CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kwon H, Ow AW, Pedatella KE, Lotspeich LJ, Reiss AL (2004) Voxel-based morphometry elucidates structural neuroanatomy of high-functioning autism and Asperger syndrome. Dev Med Child Neurol 46:760–764CrossRefPubMedGoogle Scholar
  53. 53.
    McAlonan GM, Suckling J, Wong N, Cheung V, Lienenkaemper N, Cheung C, Chua SE (2008) Distinct patterns of grey matter abnormality in high-functioning autism and Asperger’s syndrome. J Child Psychol Psychiatry 49:1287–1295CrossRefPubMedGoogle Scholar
  54. 54.
    Mengotti P, D’Agostini S, Terlevic R, De Colle C, Biasizzo E, Londero D, Ferro A, Rambaldelli G, Balestrieri M, Zanini S, Fabbro F, Molteni M, Brambilla P (2011) Altered white matter integrity and development in children with autism: a combined voxel-based morphometry and diffusion imaging study. Brain Res Bull 84:189–195CrossRefPubMedGoogle Scholar
  55. 55.
    Riva D, Bulgheroni S, Aquino D, Di Salle F, Savoiardo M, Erbetta A (2011) Basal forebrain involvement in low-functioning autistic children: a voxel-based morphometry study. AJNR Am J Neuroradiol 32:1430–1435CrossRefPubMedGoogle Scholar
  56. 56.
    Waiter GD, Williams JH, Murray AD, Gilchrist A, Perrett DI, Whiten A (2004) A voxel-based investigation of brain structure in male adolescents with autistic spectrum disorder. Neuroimage 22:619–625CrossRefPubMedGoogle Scholar
  57. 57.
    Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38CrossRefPubMedGoogle Scholar
  59. 59.
    Lombardo MV, Chakrabarti B, Bullmore ET, Sadek SA, Pasco G, Wheelwright SJ, Suckling J, Baron-Cohen S (2010) Atypical neural self-representation in autism. Brain 133:611–624CrossRefPubMedGoogle Scholar
  60. 60.
    Assaf M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R, O’Boyle JG, Schultz RT, Pearlson GD (2010) Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 53:247–256CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Yang X, Si T, Gong Q, Qiu L, Jia Z, Zhou M, Zhao Y, Hu X, Wu M, Zhu H (2016) Brain gray matter alterations and associated demographic profiles in adults with autism spectrum disorder: a meta-analysis of voxel-based morphometry studies. Aust N Z J Psychiatry 50:741–753CrossRefPubMedGoogle Scholar
  62. 62.
    Riddle K, Cascio CJ, Woodward ND (2016) Brain structure in autism: a voxel-based morphometry analysis of the autism brain imaging database exchange (ABIDE). Brain Imaging Behav. doi: 10.1007/s11682-016-9534-5 Google Scholar
  63. 63.
    Craig MC, Zaman SH, Daly EM, Cutter WJ, Robertson DM, Hallahan B, Toal F, Reed S, Ambikapathy A, Brammer M, Murphy CM, Murphy DG (2007) Women with autistic-spectrum disorder: magnetic resonance imaging study of brain anatomy. Br J Psychiatry 191:224–228CrossRefPubMedGoogle Scholar
  64. 64.
    Kosaka H, Omori M, Munesue T, Ishitobi M, Matsumura Y, Takahashi T, Narita K, Murata T, Saito DN, Uchiyama H, Morita T, Kikuchi M, Mizukami K, Okazawa H, Sadato N, Wada Y (2010) Smaller insula and inferior frontal volumes in young adults with pervasive developmental disorders. Neuroimage 50:1357–1363CrossRefPubMedGoogle Scholar
  65. 65.
    Lange N, Travers BG, Bigler ED, Prigge MB, Froehlich AL, Nielsen JA, Cariello AN, Zielinski BA, Anderson JS, Fletcher PT, Alexander AA, Lainhart JE (2015) Longitudinal volumetric brain changes in autism spectrum disorder ages 6–35 years. Autism Res 8:82–93CrossRefPubMedGoogle Scholar
  66. 66.
    Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81CrossRefPubMedGoogle Scholar
  67. 67.
    Araghi-Niknam M, Fatemi SH (2003) Levels of Bcl-2 and P53 are altered in superior frontal and cerebellar cortices of autistic subjects. Cell Mol Neurobiol 23:945–952CrossRefPubMedGoogle Scholar
  68. 68.
    Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, Courchesne E, Everall IP (2010) Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 68:368–376CrossRefPubMedGoogle Scholar
  69. 69.
    Carper RA, Courchesne E (2005) Localized enlargement of the frontal cortex in early autism. Biol Psychiatry 57:126–133CrossRefPubMedGoogle Scholar
  70. 70.
    Schumann CM, Bloss CS, Barnes CC, Wideman GM, Carper RA, Akshoomoff N, Pierce K, Hagler D, Schork N, Lord C, Courchesne E (2010) Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J Neurosci 30:4419–4427CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Seghier ML (2013) The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19:43–61CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Langen M, Bos D, Noordermeer SD, Nederveen H, van Engeland H, Durston S (2014) Changes in the development of striatum are involved in repetitive behavior in autism. Biol Psychiatry 76:405–411CrossRefPubMedGoogle Scholar
  73. 73.
    Courchesne E, Campbell K, Solso S (2011) Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res 1380:138–145CrossRefPubMedGoogle Scholar
  74. 74.
    Wang SS, Kloth AD, Badura A (2014) The cerebellum, sensitive periods, and autism. Neuron 83:518–532CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM (2008) Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry 23:289–299CrossRefPubMedGoogle Scholar
  76. 76.
    Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, Merz A (2002) Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol 22:171–175CrossRefPubMedGoogle Scholar
  77. 77.
    Kemper TL, Bauman ML (1993) The contribution of neuropathologic studies to the understanding of autism. Neurol Clin 11:175–187PubMedGoogle Scholar
  78. 78.
    Mosconi M, Takarae Y, Sweeney J (2011) Motor impairments and dyspraxia in autism. Autism spectrum disorders. Oxford University Press Inc, New YorkGoogle Scholar
  79. 79.
    Teitelbaum P, Teitelbaum O, Nye J, Fryman J, Maurer RG (1998) Movement analysis in infancy may be useful for early diagnosis of autism. Proc Natl Acad Sci USA 95:13982–13987CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Bryson SE, Zwaigenbaum L, Brian J, Roberts W, Szatmari P, Rombough V, McDermott C (2007) A prospective case series of high-risk infants who developed autism. J Autism Dev Disord 37:12–24CrossRefPubMedGoogle Scholar
  81. 81.
    Buckner RL (2013) The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80:807–815CrossRefPubMedGoogle Scholar
  82. 82.
    Argyropoulos GP (2016) The cerebellum, internal models and prediction in ‘non-motor’ aspects of language: a critical review. Brain Lang 161:4–17CrossRefPubMedGoogle Scholar
  83. 83.
    Carper RA, Courchesne E (2000) Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain 123(Pt 4):836–844CrossRefPubMedGoogle Scholar
  84. 84.
    Marco EJ, Khatibi K, Hill SS, Siegel B, Arroyo MS, Dowling AF, Neuhaus JM, Sherr EH, Hinkley LN, Nagarajan SS (2012) Children with autism show reduced somatosensory response: an MEG study. Autism Res 5:340–351CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Good CD, Johnsrude I, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage 14:685–700CrossRefPubMedGoogle Scholar
  86. 86.
    Steinmetz H, Volkmann J, Jancke L, Freund HJ (1991) Anatomical left-right asymmetry of language-related temporal cortex is different in left- and right-handers. Ann Neurol 29:315–319CrossRefPubMedGoogle Scholar
  87. 87.
    Amunts K, Schlaug G, Schleicher A, Steinmetz H, Dabringhaus A, Roland PE, Zilles K (1996) Asymmetry in the human motor cortex and handedness. Neuroimage 4:216–222CrossRefPubMedGoogle Scholar
  88. 88.
    Amunts K, Jancke L, Mohlberg H, Steinmetz H, Zilles K (2000) Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia 38:304–312CrossRefPubMedGoogle Scholar
  89. 89.
    Powell JL, Kemp GJ, Roberts N, Garcia-Finana M (2012) Sulcal morphology and volume of Broca’s area linked to handedness and sex. Brain Lang 121:206–218CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of RadiologyWest China Hospital of Sichuan UniversityChengduPeople’s Republic of China

Personalised recommendations