European Child & Adolescent Psychiatry

, Volume 25, Issue 5, pp 509–518 | Cite as

Interactive effects of BDNF Val66Met genotype and trauma on limbic brain anatomy in childhood

  • Hilary A. Marusak
  • Nisha Kuruvadi
  • Angela M. Vila
  • David W. Shattuck
  • Shantanu H. Joshi
  • Anand A. Joshi
  • Pavan K. Jella
  • Moriah E. Thomason
Original Contribution

Abstract

Childhood trauma is a major precipitating factor in psychiatric disease. Emerging data suggest that stress susceptibility is genetically determined, and that risk is mediated by changes in limbic brain circuitry. There is a need to identify markers of disease vulnerability, and it is critical that these markers be investigated in childhood and adolescence, a time when neural networks are particularly malleable and when psychiatric disorders frequently emerge. In this preliminary study, we evaluated whether a common variant in the brain-derived neurotrophic factor (BDNF) gene (Val66Met; rs6265) interacts with childhood trauma to predict limbic gray matter volume in a sample of 55 youth high in sociodemographic risk. We found trauma-by-BDNF interactions in the right subcallosal area and right hippocampus, wherein BDNF-related gray matter changes were evident in youth without histories of trauma. In youth without trauma exposure, lower hippocampal volume was related to higher symptoms of anxiety. These data provide preliminary evidence for a contribution of a common BDNF gene variant to the neural correlates of childhood trauma among high-risk urban youth. Altered limbic structure in early life may lay the foundation for longer term patterns of neural dysfunction, and hold implications for understanding the psychiatric and psychobiological consequences of traumatic stress on the developing brain.

Keywords

Brain-derived neurotrophic factor Early adversity Mood disorders Gray matter volume Medial prefrontal cortex Adolescence 

References

  1. 1.
    Aguilera M, Arias B, Wichers M, Barrantes-Vidal N, Moya J, Villa H, van Os J, Ibanez MI, Ruiperez MA, Ortet G, Fananas L (2009) Early adversity and 5-HTT/BDNF genes: new evidence of gene–environment interactions on depressive symptoms in a general population. Psychol Med 39(9):1425–1432CrossRefPubMedGoogle Scholar
  2. 2.
    Alim TN, Charney DS, Mellman TA (2006) An overview of posttraumatic stress disorder in African Americans. J Clin Psychol 62(7):801–813CrossRefPubMedGoogle Scholar
  3. 3.
    Baker LM, Williams LM, Korgaonkar MS, Cohen RA, Heaps JM, Paul RH (2013) Impact of early vs. late childhood early life stress on brain morphometrics. Brain Imaging Behav 7(2):196–203CrossRefPubMedGoogle Scholar
  4. 4.
    Birmaher B, Khetarpal S, Brent D, Cully M, Balach L, Kaufman J, Neer SM (1997) The screen for child anxiety related emotional disorders (SCARED): scale construction and psychometric characteristics. J Am Acad Child Adolesc Psychiatry 36(4):545–553CrossRefPubMedGoogle Scholar
  5. 5.
    Briere J, Runtz M (1990) Differential adult symptomatology associated with three types of child abuse histories. Child Abuse Negl 14(3):357–364CrossRefPubMedGoogle Scholar
  6. 6.
    Calabrese F, Molteni R, Racagni G, Riva MA (2009) Neuronal plasticity: a link between stress and mood disorders. Psychoneuroendocrinology 34(1(0)): S208–S216Google Scholar
  7. 7.
    Carballedo A, Morris D, Zill P, Fahey C, Reinhold E, Meisenzahl E, Bondy B, Gill M, Moller HJ, Frodl T (2013) Brain-derived neurotrophic factor Val66Met polymorphism and early life adversity affect hippocampal volume. Am J Med Genet B Neuropsychiatr Genet 162B(2):183–190CrossRefPubMedGoogle Scholar
  8. 8.
    Casey BJ, Glatt CE, Tottenham N, Soliman F, Bath K, Amso D, Altemus M, Pattwell S, Jones R, Levita L, McEwen B, Magarinos AM, Gunnar M, Thomas KM, Mezey J, Clark AG, Hempstead BL, Lee FS (2009) Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development. Neuroscience 164(1):108–120CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE (2010) Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry 167(5):509–527CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Castren E, Rantamaki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70(5):289–297CrossRefPubMedGoogle Scholar
  11. 11.
    Charney DS, Manji HK (2004) Life stress, genes, and depression: multiple pathways lead to increased risk and new opportunities for intervention. Sci STKE 2004(225): re5Google Scholar
  12. 12.
    Cheeran B, Talelli P, Mori F, Koch G, Suppa A, Edwards M, Houlden H, Bhatia K, Greenwood R, Rothwell JC (2008) A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol 586(Pt 23):5717–5725CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cicchetti D, Cohen DJ (2006) Developmental psychopathology, theory and method. Wiley, New YorkGoogle Scholar
  14. 14.
    Cicchetti D, Rogosch FA (1996) Equifinality and multifinality in developmental psychopathology. Dev Psychopathol 8(04):597–600CrossRefGoogle Scholar
  15. 15.
    Dannlowski U, Stuhrmann A, Beutelmann V, Zwanzger P, Lenzen T, Grotegerd D, Domschke K, Hohoff C, Ohrmann P, Bauer J, Lindner C, Postert C, Konrad C, Arolt V, Heindel W, Suslow T, Kugel H (2012) Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol Psychiatry 71(4):286–293CrossRefPubMedGoogle Scholar
  16. 16.
    De Bellis MD (2001) Developmental traumatology: the psychobiological development of maltreated children and its implications for research, treatment, and policy. Dev Psychopathol 13(3):539–564CrossRefPubMedGoogle Scholar
  17. 17.
    Dichter GS, Felder JN, Petty C, Bizzell J, Ernst M, Smoski MJ (2009) The effects of psychotherapy on neural responses to rewards in major depression. Biol Psychiatry 66(9):886–897CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dincheva I, Glatt CE, Lee FS (2012) Impact of the BDNF Val66Met polymorphism on cognition: implications for behavioral genetics. Neuroscientist 18(5):439–451CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Divers J, Redden DT, Rice KM, Vaughan LK, Padilla MA, Allison DB, Bluemke DA, Young HJ, Arnett DK (2011) Comparing self-reported ethnicity to genetic background measures in the context of the Multi-Ethnic Study of Atherosclerosis (MESA). BMC Genet 12:28CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213(1–2):93–118CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59(12):1116–1127CrossRefPubMedGoogle Scholar
  22. 22.
    Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112(2):257–269CrossRefPubMedGoogle Scholar
  23. 23.
    Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191CrossRefPubMedGoogle Scholar
  24. 24.
    Felitti VJ, Anda RF, Nordenberg D, Williamson DF, Spitz AM, Edwards V, Koss MP, Marks JS (1998) Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am J Prev Med 14(4):245–258CrossRefPubMedGoogle Scholar
  25. 25.
    Frodl T, Skokauskas N, Frey EM, Morris D, Gill M, Carballedo A (2014) BDNF Val66Met genotype interacts with childhood adversity and influences the formation of hippocampal subfields. Hum Brain Mapp 35(12):5776–5783CrossRefPubMedGoogle Scholar
  26. 26.
    Furman DJ, Chen MC, Gotlib IH (2011) Variant in oxytocin receptor gene is associated with amygdala volume. Psychoneuroendocrinology 36(6):891–897CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gallinat J, Schubert F, Bruhl R, Hellweg R, Klar AA, Kehrer C, Wirth C, Sander T, Lang UE (2010) Met carriers of BDNF Val66Met genotype show increased N-acetylaspartate concentration in the anterior cingulate cortex. Neuroimage 49(1):767–771CrossRefPubMedGoogle Scholar
  28. 28.
    Gatt JM, Nemeroff CB, Dobson-Stone C, Paul RH, Bryant RA, Schofield PR, Gordon E, Kemp AH, Williams LM (2009) Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Mol Psychiatry 14(7):681–695CrossRefPubMedGoogle Scholar
  29. 29.
    Gerritsen L, Tendolkar I, Franke B, Vasquez AA, Kooijman S, Buitelaar J, Fernandez G, Rijpkema M (2012) BDNF Val66Met genotype modulates the effect of childhood adversity on subgenual anterior cingulate cortex volume in healthy subjects. Mol Psychiatry 17(6):597–603CrossRefPubMedGoogle Scholar
  30. 30.
    Giedd JN, Vaituzis AC, Hamburger SD, Lange N, Rajapakse JC, Kaysen D, Vauss YC, Rapoport JL (1996) Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4–18 years. J Comp Neurol 366(2):223–230CrossRefPubMedGoogle Scholar
  31. 31.
    Gilbert R, Widom CS, Browne K, Fergusson D, Webb E, Janson S (2009) Burden and consequences of child maltreatment in high-income countries. Lancet 373(9657):68–81CrossRefPubMedGoogle Scholar
  32. 32.
    Goldmann E, Aiello A, Uddin M, Delva J, Koenen K, Gant LM, Galea S (2011) Pervasive exposure to violence and posttraumatic stress disorder in a predominantly African American Urban Community: the Detroit Neighborhood Health Study. J Trauma Stress 24(6):747–751CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Green JG, McLaughlin KA, Berglund PA, Gruber MJ, Sampson NA, Zaslavsky AM, Kessler RC (2010) Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication I: associations with first onset of DSM-IV disorders. Arch Gen Psychiatry 67(2):113–123CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hashimoto K, Shimizu E, Iyo M (2004) Critical role of brain-derived neurotrophic factor in mood disorders. Brain Res Rev 45(2):104–114CrossRefPubMedGoogle Scholar
  35. 35.
    Hasler G (2010) Pathophysiology of depression: do we have any solid evidence of interest to clinicians? World Psychiatry 9(3):155–161CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Joffe RT, Gatt JM, Kemp AH, Grieve S, Dobson-Stone C, Kuan SA, Schofield PR, Gordon E, Williams LM (2009) Brain derived neurotrophic factor Val66Met polymorphism, the five factor model of personality and hippocampal volume: implications for depressive illness. Hum Brain Mapp 30(4):1246–1256CrossRefPubMedGoogle Scholar
  37. 37.
    Joshi AA, Shattuck DW, Leahy RM (2012) A fast and accurate method for automated cortical surface registration and labeling. In: Proceedings of the WBIR. LNCS. Springer, Berlin, pp 180–189Google Scholar
  38. 38.
    Joshi AA, Shattuck DW, Thompson PM, Leahy RM (2007) Surface-constrained volumetric brain registration using harmonic mappings. IEEE Trans Med Imaging 26(12):1657–1669CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kaufman AS, Kaufman NL (2004) Kaufman brief intelligence test: KBIT 2; Manual. Pearson, LondonGoogle Scholar
  40. 40.
    Kaufman J, Yang BZ, Douglas-Palumberi H, Grasso D, Lipschitz D, Houshyar S, Krystal JH, Gelernter J (2006) Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children. Biol Psychiatry 59(8):673–680CrossRefPubMedGoogle Scholar
  41. 41.
    Kitayama N, Vaccarino V, Kutner M, Weiss P, Bremner JD (2005) Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J Affect Disord 88(1):79–86CrossRefPubMedGoogle Scholar
  42. 42.
    Kovacs M (1992) Children’s depression inventory. Multi-Health Systems Incorporated, TorontoGoogle Scholar
  43. 43.
    Lim L, Radua J, Rubia K (2014) Gray matter abnormalities in childhood maltreatment: a voxel-wise meta-analysis. Am J Psychiatry 171(8):854–863CrossRefPubMedGoogle Scholar
  44. 44.
    Lupien SJ, Parent S, Evans AC, Tremblay RE, Zelazo PD, Corbo V, Pruessner JC, Seguin JR (2011) Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth. Proc Natl Acad Sci USA 108(34):14324–14329CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Marshall WA, Tanner JM (1968) Growth and physiological development during adolescence. Annu Rev Med 19:283–300CrossRefPubMedGoogle Scholar
  46. 46.
    Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660CrossRefPubMedGoogle Scholar
  47. 47.
    McEwen BS, Gianaros PJ (2011) Stress- and allostasis-induced brain plasticity. Annu Rev Med 62:431–445CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    McLaughlin KA, Koenen KC, Hill ED, Petukhova M, Sampson NA, Zaslavsky AM, Kessler RC (2013) Trauma exposure and posttraumatic stress disorder in a national sample of adolescents. J Am Acad Child Adolesc Psychiatry 52(8):815–830 e814Google Scholar
  49. 49.
    McLaughlin KA, Sheridan MA, Lambert HK (2014) Childhood adversity and neural development: deprivation and threat as distinct dimensions of early experience. Neurosci Biobehav Rev 47:578–591CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Payne C, Machado CJ, Bliwise NG, Bachevalier J (2010) Maturation of the hippocampal formation and amygdala in Macaca mulatta: a volumetric magnetic resonance imaging study. Hippocampus 20(8):922–935CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Phillips ML, Drevets WC, Rauch SL, Lane R (2003) Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry 54(5):504–514CrossRefPubMedGoogle Scholar
  52. 52.
    Pine DS, Cohen P, Gurley D, Brook J, Ma Y (1998) The risk for early-adulthood anxiety and depressive disorders in adolescents with anxiety and depressive disorders. Arch Gen Psychiatry 55(1):56–64CrossRefPubMedGoogle Scholar
  53. 53.
    Poo MM (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2(1):24–32CrossRefPubMedGoogle Scholar
  54. 54.
    Radley JJ, Williams B, Sawchenko PE (2008) Noradrenergic innervation of the dorsal medial prefrontal cortex modulates hypothalamo-pituitary–adrenal responses to acute emotional stress. J Neurosci 28(22):5806–5816CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Rossi C, Angelucci A, Costantin L, Braschi C, Mazzantini M, Babbini F, Fabbri ME, Tessarollo L, Maffei L, Berardi N, Caleo M (2006) Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci 24(7):1850–1856CrossRefPubMedGoogle Scholar
  56. 56.
    Schinder AF, Poo M (2000) The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci 23(12):639–645CrossRefPubMedGoogle Scholar
  57. 57.
    Shattuck DW, Leahy RM (2001) Automated graph-based analysis and correction of cortical volume topology. IEEE Trans Med Imaging 20(11):1167–1177CrossRefPubMedGoogle Scholar
  58. 58.
    Shattuck DW, Leahy RM (2002) BrainSuite: an automated cortical surface identification tool. Med Image Anal 6(2):129–142CrossRefPubMedGoogle Scholar
  59. 59.
    Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM (2001) Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13(5):856–876CrossRefPubMedGoogle Scholar
  60. 60.
    Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428CrossRefPubMedGoogle Scholar
  61. 61.
    Sullivan RM, Gratton A (1999) Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. J Neurosci 19(7):2834–2840PubMedGoogle Scholar
  62. 62.
    Toga AW, Thompson PM, Sowell ER (2006) Mapping brain maturation. Trends Neurosci 29(3):148–159CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Tottenham N, Sheridan MA (2009) A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing. Front Hum Neurosci 3:68PubMedPubMedCentralGoogle Scholar
  64. 64.
    Uematsu A, Matsui M, Tanaka C, Takahashi T, Noguchi K, Suzuki M, Nishijo H (2012) Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals. PLoS One 7(10):e46970CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    van Harmelen AL, van Tol MJ, van der Wee NJ, Veltman DJ, Aleman A, Spinhoven P, van Buchem MA, Zitman FG, Penninx BW, Elzinga BM (2010) Reduced medial prefrontal cortex volume in adults reporting childhood emotional maltreatment. Biol Psychiatry 68(9):832–838CrossRefPubMedGoogle Scholar
  66. 66.
    Webster MJ, Weickert CS, Herman MM, Kleinman JE (2002) BDNF mRNA expression during postnatal development, maturation and aging of the human prefrontal cortex. Brain Res Dev Brain Res 139(2):139–150CrossRefPubMedGoogle Scholar
  67. 67.
    Wichers M, Kenis G, Jacobs N, Mengelers R, Derom C, Vlietinck R, van Os J (2008) The BDNF Val(66)Met × 5-HTTLPR × child adversity interaction and depressive symptoms: an attempt at replication. Am J Med Genet B Neuropsychiatr Genet 147B(1):120–123CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hilary A. Marusak
    • 1
    • 2
  • Nisha Kuruvadi
    • 3
  • Angela M. Vila
    • 1
  • David W. Shattuck
    • 4
  • Shantanu H. Joshi
    • 4
  • Anand A. Joshi
    • 5
    • 6
  • Pavan K. Jella
    • 7
  • Moriah E. Thomason
    • 1
    • 8
    • 9
  1. 1.Merrill Palmer Skillman Institute for Child and Family DevelopmentWayne State UniversityDetroitUSA
  2. 2.Department of Psychiatry and Behavioral NeurosciencesWayne State University School of MedicineDetroitUSA
  3. 3.Liberty University College of Osteopathic MedicineLynchburgUSA
  4. 4.Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUSA
  5. 5.Brain and Creativity InstituteUniversity of Southern CaliforniaLos AngelesUSA
  6. 6.Signal and Image Processing InstituteUniversity of Southern CaliforniaLos AngelesUSA
  7. 7.Department of RadiologyWayne State UniversityDetroitUSA
  8. 8.Department of PediatricsWayne State University School of MedicineDetroitUSA
  9. 9.Perinatology Research BranchNICHD/NIH/DHSSDetroitUSA

Personalised recommendations