European Child & Adolescent Psychiatry

, Volume 24, Issue 7, pp 827–836 | Cite as

GRIN2B predicts attention problems among disadvantaged children

  • Valentina Riva
  • Marco Battaglia
  • Maria Nobile
  • Francesca Cattaneo
  • Claudio Lazazzera
  • Sara Mascheretti
  • Roberto Giorda
  • Chantal Mérette
  • Claudia Émond
  • Michel Maziade
  • Cecilia MarinoEmail author
Original Contribution


It is well established that adversities and GRIN2B (coding an N-methyl-d-aspartate receptor subunit) are independently associated with behavioral and cognitive impairments in childhood. However, a high proportion of children exposed to adversities have good, long-term outcomes. We hypothesized that among children exposed to adversities, GRIN2B variants would predict the worst cognitive and behavioral outcomes. 6 single nucleotide polymorphisms of GRIN2B were genotyped in 625 children aged 6–11 years from an Italian community-based sample. The interacting effect of GRIN2B variants with 4 measures of adversities [low socioeconomic status (SES), preterm delivery, maternal smoking during pregnancy, and absence of breastfeeding] was investigated upon blindly assessed cognitive abilities (vocabulary, block design, digit spans of Wechsler’s Intelligence Scale, and Rey complex figure) and parents-rated behavioral problems (Child Behavior Checklist/6–18). Rs2268119 × SES interaction (Hotelling’s Trace = 0.07; F(12,1154) = 3.53; p = 0.00004) influenced behavior, with more attention problems among children in the ‘either A/T or T/T genotype and low SES’ group, compared to all other groups. This interaction effect was not significant in an independent, replication sample of 475 subjects from an Italian community-based sample. GRIN2B variants predict children with the worst outcome in attention functioning among children exposed to low SES. Our findings, if replicated, could help in the identification of children with the highest risk and may prompt cost-effective preventive/treatment strategies.


Socioeconomic status GRIN2B Gene–environment interaction 



We thank all the teachers, parents, and children who took part and collaborated in this study. V Riva is a scholar in the San Raffaele University International Ph D Program in Developmental Psychopatology supported in part by CARIPLO Foundation ‘Human Talent’. This work is also supported by Fondazione Della Provincia Di Lecco Onlus/Rotary Club, Lecco (2010). All authors report no conflict of interest.

Conflict of interest

The authors declare that they have no conflict of interest

Supplementary material

787_2014_627_MOESM1_ESM.docx (36 kb)
Supplementary material 1 (DOCX 35 kb)


  1. 1.
    van Oort FV, van der Ende J, Wadsworth ME, Verhulst FC, Achenbach TM (2011) Cross-national comparison of the link between socioeconomic status and emotional and behavioral problems in youths. Soc Psychiatry Psychiatr Epidemiol 46(2):167–172PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Wadsworth ME, Achenbach TM (2005) Explaining the link between low socioeconomic status and psychopathology: testing two mechanisms of the social causation hypothesis. J Consult Clin Psychol 73(6):1146–1153PubMedCrossRefGoogle Scholar
  3. 3.
    Lindstrom K, Lindblad F, Hjern A (2011) Preterm birth and attention-deficit/hyperactivity disorder in schoolchildren. Pediatrics 127(5):858–865PubMedCrossRefGoogle Scholar
  4. 4.
    van Baar AL, Vermaas J, Knots E, de Kleine MJ, Soons P (2009) Functioning at school age of moderately preterm children born at 32 to 36 weeks’ gestational age. Pediatrics 124(1):251–257PubMedCrossRefGoogle Scholar
  5. 5.
    Cornelius MD, Day NL (2009) Developmental consequences of prenatal tobacco exposure. Curr Opin Neurol. 22(2):121–125PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Anderson JW, Johnstone BM, Remley DT (1999) Breast-feeding and cognitive development: a meta-analysis. Am J Clin Nutr 70(4):525–535PubMedGoogle Scholar
  7. 7.
    Walfisch A, Sermer C, Cressman A, Koren G (2013) Breast milk and cognitive development—the role of confounders: a systematic review. BMJ Open. 3(8):e003259PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Rutter M (2006) Implications of resilience concepts for scientific understanding. Ann N Y Acad Sci 1094:1–12PubMedCrossRefGoogle Scholar
  9. 9.
    Spinath FM, Price TS, Dale PS, Plomin R (2004) The genetic and environmental origins of language disability and ability. Child Dev 75(2):445–454PubMedCrossRefGoogle Scholar
  10. 10.
    Haworth CM, Wright MJ, Luciano M, Martin NG, de Geus EJ, van Beijsterveldt CE, Bartels M, Posthuma D, Boomsma DI, Davis OS, Kovas Y, Corley RP, Defries JC, Hewitt JK, Olson RK, Rhea SA, Wadsworth SJ, Iacono WG, McGue M, Thompson LA, Hart SA, Petrill SA, Lubinski D, Plomin R (2010) The heritability of general cognitive ability increases linearly from childhood to young adulthood. Mol Psychiatry. 15:1112–1120PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    van den Oord EJ, Boomsma DI, Verhulst FC (1994) A study of problem behaviors in 10- to 15-year-old biologically related and unrelated international adoptees. Behav Genet 24(3):193–205PubMedCrossRefGoogle Scholar
  12. 12.
    Edelbrock C, Rende R, Plomin R, Thompson LA (1995) A twin study of competence and problem behavior in childhood and early adolescence. J Child Psychol Psychiatry 36(5):775–785PubMedCrossRefGoogle Scholar
  13. 13.
    van der Valk JC, van den Oord EJ, Verhulst FC, Boomsma DI (2003) Genetic and environmental contributions to stability and change in children’s internalizing and externalizing problems. J Am Acad Child Adolesc Psychiatry 42(10):1212–1220PubMedCrossRefGoogle Scholar
  14. 14.
    Plomin R, Haworth CM, Davis OS (2009) Common disorders are quantitative traits. Nat Rev Genet 10(12):872–878PubMedCrossRefGoogle Scholar
  15. 15.
    Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11(3):327–335PubMedCrossRefGoogle Scholar
  16. 16.
    Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8(6):413–426PubMedCrossRefGoogle Scholar
  17. 17.
    Ito I (1997) Knockout mouse–its characteristics and application (1): NMDA receptor subunit knockout mouse. Nihon Shinkei Seishin Yakurigaku Zasshi. 17(5):185–192PubMedGoogle Scholar
  18. 18.
    Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, Tsien JZ (1999) Genetic enhancement of learning and memory in mice. Nature 401:63–69PubMedCrossRefGoogle Scholar
  19. 19.
    Fetterolf F, Foster KA (2011) Regulation of long-term plasticity induction by the channel and C-terminal domains of GluN2 subunits. Mol Neurobiol 44(1):71–82PubMedCrossRefGoogle Scholar
  20. 20.
    Endele S, Rosenberger G, Geider K, Popp B, Tamer C, Stefanova I, Milh M, Kortum F, Fritsch A, Pientka FK, Hellenbroich Y, Kalscheuer VM, Kohlhase J, Moog U, Rappold G, Rauch A, Ropers HH, von Spiczak S, Tonnies H, Villeneuve N, Villard L, Zabel B, Zenker M, Laube B, Reis A, Wieczorek D, Van Maldergem L, Kutsche K (2010) Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 42:1021–1026PubMedCrossRefGoogle Scholar
  21. 21.
    Seripa D, Matera MG, Franceschi M, Bizzarro A, Paris F, Cascavilla L, Rinaldi M, Panza F, Solfrizzi V, Daniele A, Masullo C, Dallapiccola B, Pilotto A (2008) Association analysis of GRIN2B, encoding N-methyl-d-aspartate receptor 2B subunit, and Alzheimer’s disease. Dement Geriatr Cogn Disord 25:287–292PubMedCrossRefGoogle Scholar
  22. 22.
    Tsai SJ, Liu HC, Liu TY, Cheng CY, Hong CJ (2002) Association analysis for genetic variants of the NMDA receptor 2b subunit (GRIN2B) and Parkinson’s disease. J Neural Transm. 109:483–488PubMedCrossRefGoogle Scholar
  23. 23.
    Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ, Tanzi RE, Bertram L (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40:827–834PubMedCrossRefGoogle Scholar
  24. 24.
    Gai X, Xie HM, Perin JC, Takahashi N, Murphy K, Wenocur AS, D’arcy M, O’Hara RJ, Goldmuntz E, Grice DE, Shaikh TH, Hakonarson H, Buxbaum JD, Elia J, White PS (2012) Rare structural variation of synapse and neurotransmission genes in autism. Mol Psychiatry. 17:402–441PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Avramopoulos D, Lasseter VK, Fallin MD, Wolyniec PS, McGrath JA, Nestadt G, Valle D, Pulver AE (2007) Stage II follow-up on a linkage scan for bipolar disorder in the Ashkenazim provides suggestive evidence for chromosome 12p and the GRIN2B gene. Genet Med. 9:745–751PubMedCrossRefGoogle Scholar
  26. 26.
    Dorval KM, Wigg KG, Crosbie J, Tannock R, Kennedy JL, Ickowicz A, Pathare T, Malone M, Schachar R, Barr CL (2007) Association of the glutamate receptor subunit gene GRIN2B with attention-deficit/hyperactivity disorder. Genes Brain Behav. 6:444–452PubMedCrossRefGoogle Scholar
  27. 27.
    Arnold PD, Rosenberg DR, Mundo E, Tharmalingam S, Kennedy JL, Richter MA (2004) Association of a glutamate (NMDA) subunit receptor gene (GRIN2B) with obsessive-compulsive disorder: a preliminary study. Psychopharmacology 174:530–538PubMedCrossRefGoogle Scholar
  28. 28.
    Ludwig KU, Roeske D, Herms S, Schumacher J, Warnke A, Plume E, Neuhoff N, Bruder J, Remschmidt H, Schulte-Korne G, Muller-Myhsok B, Nothen MM, Hoffmann P (2010) Variation in GRIN2B contributes to weak performance in verbal short-term memory in children with dyslexia. Am J Med Genet B Neuropsychiatr Genet. 153B:503–511PubMedGoogle Scholar
  29. 29.
    de Quervain DJ, Papassotiropoulos A (2006) Identification of a genetic cluster influencing memory performance and hippocampal activity in humans. Proc Natl Acad Sci USA. 103(11):4270–4274PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Thapar A, Rice F, Hay D, Boivin J, Langley K, van den Bree M, Rutter M, Harold G (2009) Prenatal smoking might not cause attention-deficit/hyperactivity disorder: evidence from a novel design. Biol Psychiatry 66(8):722–727PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Wechsler D (2006) Wechsler intelligence scale for children, 3rd edn. The Psychological Corporation, San AntonioGoogle Scholar
  32. 32.
    Rey A (1959) Reattivo della Figura Complessa. Firenze, Organizzazioni SpecialiGoogle Scholar
  33. 33.
    Achenbach TM, Rescorla LA (2001) Manual for the ASEBA school age forms & profiles. University of Vermont, Research Center for Children, Youth, and Families, BurlingtonGoogle Scholar
  34. 34.
    Frigerio A, Rucci P, Goodman R, Ammaniti M, Carlet O, Cavolina P, De Girolamo G, Lenti C, Lucarelli L, Mani E, Martinuzzi A, Micali N, Milone A, Morosini P, Muratori F, Nardocci F, Pastore V, Polidori G, Tullini A, Vanzin L, Villa L, Walder M, Zuddas A, Molteni M (2009) Prevalence and correlates of mental disorders among adolescents in Italy: the PrISMA study. Eur Child Adolesc Psychiatry 18:217–226PubMedCrossRefGoogle Scholar
  35. 35.
    Frigerio A, Cattaneo C, Cataldo MG, Schiatti A, Molteni M, Battaglia M (2004) Behavioral and emotional problems among Italian children and adolescents aged 4 to 18 years as reported by parents and teachers. Eur J Psychol Assess. 20:124–133CrossRefGoogle Scholar
  36. 36.
    Achenbach TM, Becker A, Dopfner M, Heiervang E, Roessner V, Steinhausen HC, Rothenberger A (2008) Multicultural assessment of child and adolescent psychopathology with ASEBA and SDQ instruments: research findings, applications, and future directions. J Child Psychol Psychiatry 49:251–275PubMedCrossRefGoogle Scholar
  37. 37.
    Hollingshead AB (1975) Four factor index of social status. Unpublished manuscript, Yale University, New HavenGoogle Scholar
  38. 38.
    DeCoster J, Iselin AM, Gallucci M (2009) A conceptual and empirical examination of justifications for dichotomization. Psychol Methods 14(4):349–366PubMedCrossRefGoogle Scholar
  39. 39.
    Nobile M, Giorda R, Marino C, Carlet O, Pastore V, Vanzin L, Bellina M, Molteni M, Battaglia M (2007) Socioeconomic status mediates the genetic contribution of the dopamine receptor D4 and serotonin transporter linked promoter region repeat polymorphisms to externalization in preadolescence. Dev Psychopathol 19:1147–1160PubMedCrossRefGoogle Scholar
  40. 40.
    Nobile M, Rusconi M, Bellina M, Marino C, Giorda R, Carlet O, Vanzin L, Molteni M, Battaglia M (2010) COMT Val158Met polymorphism and socioeconomic status interact to predict attention deficit/hyperactivity problems in children aged 10–14. Eur Child Adolesc Psychiatry 19:549–557PubMedCrossRefGoogle Scholar
  41. 41.
    Chyi LJ, Lee HC, Hintz SR, Gould JB, Sutcliffe TL (2008) School outcomes of late preterm infants: special needs and challenges for infants born at 32 to 36 weeks gestation. J Pediatr 153:25–31PubMedCrossRefGoogle Scholar
  42. 42.
    Gorroochurn P, Hodge SE, Heiman GA, Durner M, Greenberg DA (2007) Non-replication of association studies: “pseudo-failures” to replicate? Genet Med. 9(6):325–331PubMedCrossRefGoogle Scholar
  43. 43.
    Nithianantharajah J (2006) Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7(9):697–709PubMedCrossRefGoogle Scholar
  44. 44.
    Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N (1994) Differential expression of five N-methyl-d-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol. 347:150–160PubMedCrossRefGoogle Scholar
  45. 45.
    Schito AM, Pizzuti A, Di Maria E, Schenone A, Ratti A, Defferrari R, Bellone E, Mancardi GL, Ajmar F, Mandich P (1997) mRNA distribution in adult human brain of GRIN2B, a N-methyl-d-aspartate (NMDA) receptor subunit. Neurosci Lett 239:49–53PubMedCrossRefGoogle Scholar
  46. 46.
    Son GH, Geum D, Chung S, Kim EJ, Jo JH, Kim CM, Lee KH, Kim H, Choi S, Kim HT, Lee CJ, Kim K (2006) Maternal stress produces learning deficits associated with impairment of NMDA receptor-mediated synaptic plasticity. J Neurosci 26:3309–3318PubMedCrossRefGoogle Scholar
  47. 47.
    Fumagalli F, Pasini M, Frasca A, Drago F, Racagni G, Riva MA (2009) Prenatal stress alters glutamatergic system responsiveness in adult rat prefrontal cortex. J Neurochem 109:1733–1744PubMedCrossRefGoogle Scholar
  48. 48.
    Demontis D, Nyegaard M, Buttenschon HN, Hedemand A, Pedersen CB, Grove J, Flint TJ, Nordentoft M, Werge T, Hougaard DM, Sorensen KM, Yolken RH, Mors O, Borglum AD, Mortensen PB (2011) Association of GRIN1 and GRIN2A-D with schizophrenia and genetic interaction with maternal herpes simplex virus-2 infection affecting disease risk. Am J Med Genet B Neuropsychiatr Genet. 156B:913–922PubMedCrossRefGoogle Scholar
  49. 49.
    Sokolowski M, Ben-Efraim YJ, Wasserman J, Wasserman D (2013) Glutamatergic GRIN2B and polyaminergic ODC1 genes in suicide attempts: associations and gene–environment interactions with childhood/adolescent physical assault. Mol Psychiatry 18(9):985–992Google Scholar
  50. 50.
    Mather K, Jinks JL (1982) Biometrical genetics: the study of continuous variation. Chapman & Hall, LondonCrossRefGoogle Scholar
  51. 51.
    Eaves LJ (2006) Genotype x environment interaction in psychopathology: fact or artifact? Twin Res Hum Genet. 9(1):1–8PubMedCrossRefGoogle Scholar
  52. 52.
    Rutter M, Moffitt TE, Caspi A (2006) Gene–environment interplay and psychopathology: multiple varieties but real effects. J Child Psychol Psychiatry 47(3–4):226–261PubMedCrossRefGoogle Scholar
  53. 53.
    Spatola CA, Scaini S, Pesenti-Gritti P, Medland SE, Moruzzi S, Ogliari A, Tambs K, Battaglia M (2011) Gene–environment interactions in panic disorder and CO(2) sensitivity: effects of events occurring early in life. Am J Med Genet B Neuropsychiatr Genet. 156B:79–88PubMedCrossRefGoogle Scholar
  54. 54.
    Battaglia M (2012) Challenges in the appraisal and application of gene–environment Interdependence. Eur J Dev Psychol 9:419–425CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Valentina Riva
    • 1
    • 2
  • Marco Battaglia
    • 4
    • 5
  • Maria Nobile
    • 1
  • Francesca Cattaneo
    • 1
  • Claudio Lazazzera
    • 1
  • Sara Mascheretti
    • 1
  • Roberto Giorda
    • 3
  • Chantal Mérette
    • 4
    • 5
  • Claudia Émond
    • 4
    • 5
  • Michel Maziade
    • 4
    • 5
  • Cecilia Marino
    • 1
    • 4
    • 5
    Email author
  1. 1.Child Psychopathology UnitScientific Institute ‘Eugenio Medea’Bosisio Parini (LC)Italy
  2. 2.The Academic Centre for the Study of Behavioural PlasticityVita-Salute San Raffaele UniversityMilanItaly
  3. 3.Molecular Biology LaboratoryScientific Institute ‘Eugenio Medea’Bosisio Parini (LC)Italy
  4. 4.Centre de Recherche de l’Institut Universitaire en Santé Mentale de QuébecQuebecCanada
  5. 5.Department of Psychiatry and NeuroscienceLaval UniversityQuebecCanada

Personalised recommendations