Advertisement

European Child & Adolescent Psychiatry

, Volume 23, Issue 10, pp 931–941 | Cite as

Neuronal substrates and functional consequences of prenatal cannabis exposure

  • Daniela Calvigioni
  • Yasmin L. Hurd
  • Tibor HarkanyEmail author
  • Erik Keimpema
Review

Abstract

Cannabis remains one of the world’s most widely used substance of abuse amongst pregnant women. Trends of the last 50 years show an increase in popularity in child-bearing women together with a constant increase in cannabis potency. In addition, potent herbal “legal” highs containing synthetic cannabinoids that mimic the effects of cannabis with unknown pharmacological and toxicological effects have gained rapid popularity amongst young adults. Despite the surge in cannabis use during pregnancy, little is known about the neurobiological and psychological consequences in the exposed offspring. In this review, we emphasize the importance of maternal programming, defined as the intrauterine presentation of maternal stimuli to the foetus, in neurodevelopment. In particular, we focus on cannabis-mediated maternal adverse effects, resulting in direct central nervous system alteration or sensitization to late-onset chronic and neuropsychiatric disorders. We compare clinical and preclinical experimental studies on the effects of foetal cannabis exposure until early adulthood, to stress the importance of animal models that permit the fine control of environmental variables and allow the dissection of cannabis-mediated molecular cascades in the developing central nervous system. In sum, we conclude that preclinical experimental models confirm clinical studies and that cannabis exposure evokes significant molecular modifications to neurodevelopmental programs leading to neurophysiological and behavioural abnormalities.

Keywords

Foetal development Endocannabinoid THC Neuropsychiatric disease 

Abbreviations

2-AG

2-Arachidonoylglycerol

ABHD6

α/β Hydrolase domain-containing 6 serine hydrolase

AEA

Anandamide

CB1R

Type 1 cannabinoid receptor

DAGLα/β

Sn-1-Diacylglycerol lipase isoforms α/β

eCB

Endocannabinoid

FAAH

Fatty acid amide hydrolase

MAGL

Monoacylglycerol lipase

NAPE

N-acyl phosphatidylethanolamine

SCG10

Super cervical ganglion-10

THC

Δ9-Tetrahydrocannabinol

Notes

Acknowledgment

This work was supported by the Swedish Medical Research Council (T.H), Swedish Brain Foundation (“Hjärnfonden”; T.H.), Novo Nordisk Foundation (Nordic Endocrinology Research Initiative; T.H.), the Petrus & Augusta Hedlunds Foundation (T.H.) and the National Institutes of Health (DA230214, T.H. & Y.L.H.; DA033660 Y.L.H.).

Conflict of interest

None.

References

  1. 1.
    UNODC (2011) World Drug ReportGoogle Scholar
  2. 2.
    European Monitoring Centre for Drugs and Drug Addiction E (2013) European drug report. Trends and DevelopmentGoogle Scholar
  3. 3.
    European Monitoring Centre for Drugs and Drug Addiction E (2013) Synthetic cannabinoids in EuropeGoogle Scholar
  4. 4.
    European Monitoring Centre for Drugs and Drug Addiction E (2012) Legal topic overviews: possession of cannabis for personal useGoogle Scholar
  5. 5.
    Grotenhermen F (2004) Pharmakologie, Toxikologie und therapeutisches Potential. 2nd edn. Hans Huber, GöttingenGoogle Scholar
  6. 6.
    Atwood BK et al (2010) JWH018, a common constituent of ‘Spice’ herbal blends, is a potent and efficacious cannabinoid CB receptor agonist. Br J Pharmacol 160(3):585–593PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Atwood BK et al (2011) CP47, 497-C8 and JWH073, commonly found in ‘Spice’ herbal blends, are potent and efficacious CB(1) cannabinoid receptor agonists. Eur J Pharmacol 659(2–3):139–145PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Zawilska JB, Wojcieszak J (2013) Spice/K2 drugs: more than innocent substitutes for marijuana. Int J Neuropsychopharmacol 17(3):509–525Google Scholar
  9. 9.
    Fantegrossi WE et al (2013) Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Delta-THC: mechanism underlying greater toxicity. Life Sci 97(1):45–54Google Scholar
  10. 10.
    SAMHSA (2011) Results from the 2010 National Survey on Drug Use and Health: Summary of National FindingsGoogle Scholar
  11. 11.
    SAMHSA (2013) 2012 National Survey on Drug Use and Health (NSDUH)Google Scholar
  12. 12.
    Wingo PA et al (2011) Recent changes in the trends of teen birth rates, 1981–2006. J Adolesc Health 48(3):281–288PubMedCrossRefGoogle Scholar
  13. 13.
    SAMHSA (2010) Pregnant teen admissions to substance abuse treatment: 1992 and 2007Google Scholar
  14. 14.
    Huizink AC (2013) Prenatal cannabis exposure and infant outcomes: overview of studies. Prog Neuropsychopharmacol Biol Psychiatry 52:45–52. doi: 10.1016/j.pnpbp.2013.09.014
  15. 15.
    Jutras-Aswad D et al (2009) Neurobiological consequences of maternal cannabis on human fetal development and its neuropsychiatric outcome. Eur Arch Psychiatry Clin Neurosci 259(7):395–412PubMedCrossRefGoogle Scholar
  16. 16.
    Fried PA (2002) Conceptual issues in behavioral teratology and their application in determining long-term sequelae of prenatal marihuana exposure. J Child Psychol Psychiatry 43(1):81–102PubMedCrossRefGoogle Scholar
  17. 17.
    Morris CV et al (2011) Molecular mechanisms of maternal cannabis and cigarette use on human neurodevelopment. Eur J Neurosci 34(10):1574–1583PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Driscoll CD, Streissguth AP, Riley EP (1990) Prenatal alcohol exposure: comparability of effects in humans and animal models. Neurotoxicol Teratol 12(3):231–237PubMedCrossRefGoogle Scholar
  19. 19.
    Knopik VS (2009) Maternal smoking during pregnancy and child outcomes: real or spurious effect? Dev Neuropsychol 34(1):1–36PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Linnet KM et al (2003) Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: review of the current evidence. Am J Psychiatry 160(6):1028–1040PubMedCrossRefGoogle Scholar
  21. 21.
    Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Gross C, Hen R (2004) The developmental origins of anxiety. Nat Rev Neurosci 5(7):545–552PubMedCrossRefGoogle Scholar
  23. 23.
    Lyon M et al (1989) Fetal neural development and schizophrenia. Schizophr Bull 15(1):149–161PubMedCrossRefGoogle Scholar
  24. 24.
    Thompson BL, Levitt P, Stanwood GD (2009) Prenatal exposure to drugs: effects on brain development and implications for policy and education. Nat Rev Neurosci 10(4):303–312PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Rogers JM (2009) Tobacco and pregnancy. Reprod Toxicol 28(2):152–160PubMedCrossRefGoogle Scholar
  26. 26.
    Nielsen A et al (2006) Maternal smoking predicts the risk of spontaneous abortion. Acta Obstet Gynecol Scand 85(9):1057–1065PubMedCrossRefGoogle Scholar
  27. 27.
    Abbott LC, Winzer-Serhan UH (2012) Smoking during pregnancy: lessons learned from epidemiological studies and experimental studies using animal models. Crit Rev Toxicol 42(4):279–303PubMedCrossRefGoogle Scholar
  28. 28.
    El Marroun H et al (2014) Prenatal tobacco exposure and brain morphology: a prospective study in young children. Neuropsychopharmacology 39(4):792–800PubMedCrossRefGoogle Scholar
  29. 29.
    Roy TS, Sabherwal U (1994) Effects of prenatal nicotine exposure on the morphogenesis of somatosensory cortex. Neurotoxicol Teratol 16(4):411–421PubMedCrossRefGoogle Scholar
  30. 30.
    Roy TS et al (1998) Nicotine evokes cell death in embryonic rat brain during neurulation. J Pharmacol Exp Ther 287(3):1136–1144PubMedGoogle Scholar
  31. 31.
    Bell SH et al (2010) The remarkably high prevalence of epilepsy and seizure history in fetal alcohol spectrum disorders. Alcohol Clin Exp Res 34(6):1084–1089PubMedCrossRefGoogle Scholar
  32. 32.
    Grotenhermen F (2003) Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet 42(4):327–360PubMedCrossRefGoogle Scholar
  33. 33.
    Hurd YL et al (2005) Marijuana impairs growth in mid-gestation fetuses. Neurotoxicol Teratol 27(2):221–229PubMedCrossRefGoogle Scholar
  34. 34.
    Dinieri JA, Hurd YL (2012) Rat models of prenatal and adolescent cannabis exposure. Methods Mol Biol 829:231–242Google Scholar
  35. 35.
    Day NL, Richardson GA (1991) Prenatal marijuana use: epidemiology, methodologic issues, and infant outcome. Clin Perinatol 18(1):77–91PubMedGoogle Scholar
  36. 36.
    Fried PA, O’Connell CM (1987) A comparison of the effects of prenatal exposure to tobacco, alcohol, cannabis and caffeine on birth size and subsequent growth. Neurotoxicol Teratol 9(2):79–85PubMedCrossRefGoogle Scholar
  37. 37.
    Burns JK (2013) Pathways from cannabis to psychosis: a review of the evidence. Front Psychiatry 4:128PubMedPubMedCentralGoogle Scholar
  38. 38.
    Weiser M, Noy S (2005) Interpreting the association between cannabis use and increased risk for schizophrenia. Dialogues Clin Neurosci 7(1):81–85PubMedPubMedCentralGoogle Scholar
  39. 39.
    Fried PA (1980) Marihuana use by pregnant women: neurobehavioral effects in neonates. Drug Alcohol Depend 6(6):415–424PubMedCrossRefGoogle Scholar
  40. 40.
    Fried PA, Watkinson B, Gray R (1998) Differential effects on cognitive functioning in 9- to 12-year olds prenatally exposed to cigarettes and marihuana. Neurotoxicol Teratol 20(3):293–306PubMedCrossRefGoogle Scholar
  41. 41.
    Hofman A et al (2004) Growth, development and health from early fetal life until young adulthood: the Generation R Study. Paediatr Perinat Epidemiol 18(1):61–72PubMedCrossRefGoogle Scholar
  42. 42.
    Jaddoe VW et al (2012) The generation R Study: design and cohort update 2012. Eur J Epidemiol 27(9):739–756PubMedCrossRefGoogle Scholar
  43. 43.
    El Marroun H et al (2008) Demographic, emotional and social determinants of cannabis use in early pregnancy: the generation R study. Drug Alcohol Depend 98(3):218–226PubMedCrossRefGoogle Scholar
  44. 44.
    El Marroun H et al (2009) Intrauterine cannabis exposure affects fetal growth trajectories: the generation R Study. J Am Acad Child Adolesc Psychiatry 48(12):1173–1181PubMedCrossRefGoogle Scholar
  45. 45.
    Hadlock FP et al (1984) Sonographic estimation of fetal weight. The value of femur length in addition to head and abdomen measurements. Radiology 150(2):535–540PubMedCrossRefGoogle Scholar
  46. 46.
    Zuckerman B et al (1989) Effects of maternal marijuana and cocaine use on fetal growth. N Engl J Med 320(12):762–768PubMedCrossRefGoogle Scholar
  47. 47.
    Boito S et al (2002) Umbilical venous volume flow in the normally developing and growth-restricted human fetus. Ultrasound Obstet Gynecol 19(4):344–349PubMedCrossRefGoogle Scholar
  48. 48.
    El Marroun H et al (2010) A prospective study on intrauterine cannabis exposure and fetal blood flow. Early Hum Dev 86(4):231–236PubMedCrossRefGoogle Scholar
  49. 49.
    Fried PA, Watkinson B (1990) 36- and 48-month neurobehavioral follow-up of children prenatally exposed to marijuana, cigarettes, and alcohol. J Dev Behav Pediatr 11(2):49–58PubMedCrossRefGoogle Scholar
  50. 50.
    Huizink AC, Mulder EJ (2006) Maternal smoking, drinking or cannabis use during pregnancy and neurobehavioral and cognitive functioning in human offspring. Neurosci Biobehav Rev 30(1):24–41PubMedCrossRefGoogle Scholar
  51. 51.
    Richardson GA, Day NL, Goldschmidt L (1995) Prenatal alcohol, marijuana, and tobacco use: infant mental and motor development. Neurotoxicol Teratol 17(4):479–487PubMedCrossRefGoogle Scholar
  52. 52.
    Wang X et al (2004) In utero marijuana exposure associated with abnormal amygdala dopamine D2 gene expression in the human fetus. Biol Psychiatry 56(12):909–915PubMedCrossRefGoogle Scholar
  53. 53.
    Goldschmidt L et al (2004) Prenatal marijuana and alcohol exposure and academic achievement at age 10. Neurotoxicol Teratol 26(4):521–532PubMedCrossRefGoogle Scholar
  54. 54.
    Fried PA, Watkinson B, Gray R (1992) A follow-up study of attentional behavior in 6-year-old children exposed prenatally to marihuana, cigarettes, and alcohol. Neurotoxicol Teratol 14(5):299–311PubMedCrossRefGoogle Scholar
  55. 55.
    Goldschmidt L, Day NL, Richardson GA (2000) Effects of prenatal marijuana exposure on child behavior problems at age 10. Neurotoxicol Teratol 22(3):325–336PubMedCrossRefGoogle Scholar
  56. 56.
    Leech SL et al (1999) Prenatal substance exposure: effects on attention and impulsivity of 6-year-olds. Neurotoxicol Teratol 21(2):109–118PubMedCrossRefGoogle Scholar
  57. 57.
    Trezza V, Cuomo V, Vanderschuren LJ (2008) Cannabis and the developing brain: insights from behavior. Eur J Pharmacol 585(2–3):441–452PubMedCrossRefGoogle Scholar
  58. 58.
    Trivedi JK (2006) Cognitive deficits in psychiatric disorders: current status. Indian J Psychiatry 48(1):10–20PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Smith AM et al (2006) Effects of prenatal marijuana on visuospatial working memory: an fMRI study in young adults. Neurotoxicol Teratol 28(2):286–295PubMedCrossRefGoogle Scholar
  60. 60.
    Navarro M, Rubio P, de Fonseca FR (1995) Behavioural consequences of maternal exposure to natural cannabinoids in rats. Psychopharmacology 122(1):1–14PubMedCrossRefGoogle Scholar
  61. 61.
    Mereu G et al (2003) Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release. Proc Natl Acad Sci USA 100(8):4915–4920PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Trezza V et al (2012) Altering endocannabinoid neurotransmission at critical developmental ages: impact on rodent emotionality and cognitive performance. Front Behav Neurosci 6:2PubMedCrossRefGoogle Scholar
  63. 63.
    Szutorisz H et al (2014) Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation. NeuropsychopharmacologyGoogle Scholar
  64. 64.
    Day NL et al (1994) Effect of prenatal marijuana exposure on the cognitive development of offspring at age three. Neurotoxicol Teratol 16(2):169–175PubMedCrossRefGoogle Scholar
  65. 65.
    Herkenham M (1992) Cannabinoid receptor localization in brain: relationship to motor and reward systems. Ann N Y Acad Sci 654:19–32PubMedCrossRefGoogle Scholar
  66. 66.
    Matsuda LA et al (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564PubMedCrossRefGoogle Scholar
  67. 67.
    Morgan NH, Stanford IM, Woodhall GL (2009) Functional CB2 type cannabinoid receptors at CNS synapses. Neuropharmacology 57(4):356–368PubMedCrossRefGoogle Scholar
  68. 68.
    Lauckner JE et al (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci USA 105(7):2699–2704PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Sawzdargo M et al (1999) Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain Res Mol Brain Res 64(2):193–198PubMedCrossRefGoogle Scholar
  70. 70.
    Cabral GA et al (2008) CB2 receptors in the brain: role in central immune function. Br J Pharmacol 153(2):240–251PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kaplan BL (2013) The role of CB1 in immune modulation by cannabinoids. Pharmacol Ther 137(3):365–374PubMedCrossRefGoogle Scholar
  72. 72.
    den Boon FS et al (2012) Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors. Proc Natl Acad Sci USA 109(9):3534–3539CrossRefGoogle Scholar
  73. 73.
    Van Sickle MD et al (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310(5746):329–332PubMedCrossRefGoogle Scholar
  74. 74.
    Belue RC et al (1995) The ontogeny of cannabinoid receptors in the brain of postnatal and aging rats. Neurotoxicol Teratol 17(1):25–30PubMedCrossRefGoogle Scholar
  75. 75.
    Oh HA et al (2013) Uncovering a role for endocannabinoid signaling in autophagy in preimplantation mouse embryos. Mol Hum Reprod 19(2):93–101PubMedCrossRefGoogle Scholar
  76. 76.
    Keimpema E, Mackie K, Harkany T (2011) Molecular model of cannabis sensitivity in developing neuronal circuits. Trends Pharmacol Sci 32(9):551–561PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Berrendero F et al (1998) Localization of mRNA expression and activation of signal transduction mechanisms for cannabinoid receptor in rat brain during fetal development. Development 125(16):3179–3188PubMedGoogle Scholar
  78. 78.
    Bisogno T et al (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 163(3):463–468PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Wang X et al (2003) Preferential limbic expression of the cannabinoid receptor mRNA in the human fetal brain. Neuroscience 118(3):681–694PubMedCrossRefGoogle Scholar
  80. 80.
    Devane WA et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258(5090):1946–1949PubMedCrossRefGoogle Scholar
  81. 81.
    Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388(6644):773–778PubMedCrossRefGoogle Scholar
  82. 82.
    Hillard CJ, Campbell WB (1997) Biochemistry and pharmacology of arachidonylethanolamide, a putative endogenous cannabinoid. J Lipid Res 38(12):2383–2398PubMedGoogle Scholar
  83. 83.
    Cravatt BF et al (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384(6604):83–87PubMedCrossRefGoogle Scholar
  84. 84.
    Dinh TP et al (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA 99(16):10819–10824PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Gulyas AI et al (2004) Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur J Neurosci 20(2):441–458PubMedCrossRefGoogle Scholar
  86. 86.
    Di Marzo V et al (1998) Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci 21(12):521–528PubMedCrossRefGoogle Scholar
  87. 87.
    Harkany T et al (2007) The emerging functions of endocannabinoid signaling during CNS development. Trends Pharmacol Sci 28(2):83–92PubMedCrossRefGoogle Scholar
  88. 88.
    Paria BC et al (2001) Dysregulated cannabinoid signaling disrupts uterine receptivity for embryo implantation. J Biol Chem 276(23):20523–20528PubMedCrossRefGoogle Scholar
  89. 89.
    Psychoyos D et al (2012) Cannabinoid receptor 1 signaling in embryo neurodevelopment. Birth Defects Res B Dev Reprod Toxicol 95(2):137–150PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Berghuis P et al (2007) Hardwiring the brain: endocannabinoids shape neuronal connectivity. Science 316(5828):1212–1216PubMedCrossRefGoogle Scholar
  91. 91.
    Argaw A et al (2011) Concerted action of CB1 cannabinoid receptor and deleted in colorectal cancer in axon guidance. J Neurosci 31(4):1489–1499PubMedCrossRefGoogle Scholar
  92. 92.
    Harkany T et al (2008) Endocannabinoid functions controlling neuronal specification during brain development. Mol Cell Endocrinol 286((1-2 Suppl 1)):S84–S90PubMedCrossRefGoogle Scholar
  93. 93.
    Keimpema E et al (2010) Differential subcellular recruitment of monoacylglycerol lipase generates spatial specificity of 2-arachidonoyl glycerol signaling during axonal pathfinding. J Neurosci 30(42):13992–14007PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kim D, Thayer SA (2001) Cannabinoids inhibit the formation of new synapses between hippocampal neurons in culture. J Neurosci 21(10):RC146PubMedGoogle Scholar
  95. 95.
    Burstein S et al (1994) Phospholipase participation in cannabinoid-induced release of free arachidonic acid. Biochem Pharmacol 48(6):1253–1264PubMedCrossRefGoogle Scholar
  96. 96.
    Bari M et al (2006) New insights into endocannabinoid degradation and its therapeutic potential. Mini Rev Med Chem 6(3):257–268PubMedCrossRefGoogle Scholar
  97. 97.
    Coutts AA et al (2001) Agonist-induced internalization and trafficking of cannabinoid CB1 receptors in hippocampal neurons. J Neurosci 21(7):2425–2433PubMedGoogle Scholar
  98. 98.
    Mulder J et al (2008) Endocannabinoid signaling controls pyramidal cell specification and long-range axon patterning. Proc Natl Acad Sci USA 105(25):8760–8765PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Puighermanal E et al (2009) Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat Neurosci 12(9):1152–1158PubMedCrossRefGoogle Scholar
  100. 100.
    Tanimura A et al (2010) The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron 65(3):320–327PubMedCrossRefGoogle Scholar
  101. 101.
    Keimpema E et al (2013) Nerve growth factor scales endocannabinoid signaling by regulating monoacylglycerol lipase turnover in developing cholinergic neurons. Proc Natl Acad Sci USA 110(5):1935–1940PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Kittler JT et al (2000) Large-scale analysis of gene expression changes during acute and chronic exposure to [Delta]9-THC in rats. Physiol Genomics 3(3):175–185PubMedGoogle Scholar
  103. 103.
    Grigorenko E et al (2002) Assessment of cannabinoid induced gene changes: tolerance and neuroprotection. Chem Phys Lipids 121(1–2):257–266PubMedCrossRefGoogle Scholar
  104. 104.
    Perez-Rosado A et al (2000) Prenatal Delta(9)-tetrahydrocannabinol exposure modifies proenkephalin gene expression in the fetal rat brain: sex-dependent differences. Brain Res Dev Brain Res 120(1):77–81PubMedCrossRefGoogle Scholar
  105. 105.
    Gomez M, Hernandez M, Fernandez-Ruiz J (2007) The activation of cannabinoid receptors during early postnatal development reduces the expression of cell adhesion molecule L1 in the rat brain. Brain Res 1145:48–55PubMedCrossRefGoogle Scholar
  106. 106.
    Quinn HR et al (2008) Adolescent rats find repeated Delta(9)-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure. Neuropsychopharmacology 33(5):1113–1126PubMedCrossRefGoogle Scholar
  107. 107.
    DiNieri JA et al (2011) Maternal cannabis use alters ventral striatal dopamine D2 gene regulation in the offspring. Biol Psychiatry 70(8):763–769PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Campolongo P et al (2007) Perinatal exposure to delta-9-tetrahydrocannabinol causes enduring cognitive deficits associated with alteration of cortical gene expression and neurotransmission in rats. Addict Biol 12(3–4):485–495PubMedCrossRefGoogle Scholar
  109. 109.
    Tortoriello G et al (2014) Miswiring the brain: Delta9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway. EMBO J 33(7):668–685PubMedCrossRefGoogle Scholar
  110. 110.
    Morozov YM, Ben-Ari Y, Freund TF (2004) The spatial and temporal pattern of fatty acid amide hydrolase expression in rat hippocampus during postnatal development. Eur J Neurosci 20(2):459–466PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniela Calvigioni
    • 1
    • 2
  • Yasmin L. Hurd
    • 3
  • Tibor Harkany
    • 1
    • 2
    Email author
  • Erik Keimpema
    • 2
  1. 1.Division of Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
  2. 2.Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
  3. 3.Department of Psychiatry and Pharmacology and Systems TherapeuticsIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations