Skip to main content
Log in

Striatal volume deficits in children with ADHD who present a poor response to methylphenidate

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

Methylphenidate (MPH) is the first choice of medical treatment for attention-deficit/hyperactivity disorder (ADHD). Its mechanism of action is to inhibit the reuptake of dopamine and noradrenaline mainly in the region of the striatum. It has been estimated that 10–30 % of patients with ADHD do not respond adequately to MPH. The aim of this study was to evaluate whether striatal differences exist between good and poor responders to MPH. The sample included 27 treatment-naïve children with ADHD between the ages of 6 and 14. MPH administration started 1 day after the MRI acquisition. After a month, psychiatrists established the good or poor response to treatment according to clinical criteria. MRI images were analyzed using a technique based on regions of interest applied specifically to the caudate and accumbens nuclei. Sixteen patients showed good response to MPH and 11 a poor one. Regions of interest analysis showed that good responders had a higher concentration of gray matter in the head of both caudate nuclei and the right nucleus accumbens. Furthermore, a significant correlation was found between caudate and accumbens nuclei volume and the Conners’ Parent Rating Scale and Continuous Performance Test improvement. These results support the hypothesis of the involvement of the caudate and accumbens nuclei in MPH response and in ADHD pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Achenbach TM, Ruffle TM (2000) The child behavior checklist and related forms for assessing behavioral/emotional problems and competencies. Pediatr Rev 21(8):265–271

    Article  CAS  PubMed  Google Scholar 

  2. Almeida Montes LG, Ricardo-Garcell J, De La Torre Barajas LB, Prado Alcántara H, Martínez García RB, Fernández-Bouzas A, Avila Acosta D (2010) Clinical correlations of grey matter reductions in the caudate nucleus of adults with attention deficit hyperactivity disorder. J Psychiatry Neurosci 35(4):238–246

    Article  PubMed  Google Scholar 

  3. Amador-Campos JA, Idiázabal-Alecha MA, Sangorrín-García J, Espadaler-Gamissans JM, Forns-Santacana M (2002) Utilidad de las escalas de Conners para discriminar entre sujetos con y sin trastorno por déficit de atención con hiperactividad. Psicothema 14(2):350–356

    Google Scholar 

  4. American Psychiatric Association (2004) Diagnostic and statistical manual of mental disorders, 4ª edn. American Psychiatric Association, Washington DC

    Google Scholar 

  5. Barkley RA (1976) Predicting the response of hyperkinetic children to stimulant drugs: a review. J Abnorm Child Psychol 4(4):327–348

    Article  CAS  PubMed  Google Scholar 

  6. Blouin B, Maddeaux C, Stanley Firestone J, van Stralen J (2010) Predicting response of ADHD symptoms to methylphenidate treatment based on comorbid anxiety. J Atten Disord 13(4):414–419

    Article  PubMed  Google Scholar 

  7. Buitelaar JK, Van der Gaag RJ, Swaab-Barneveld H, Kuiper M (1995) Prediction of clinical response to methylphenidate in children with attention-deficit hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 34(8):1025–1032

    Article  CAS  PubMed  Google Scholar 

  8. Bush G, Spencer TJ, Holmes J, Shin LM, Valera EM, Seidman LJ, Makris N, Surman C, Aleardi M, Mick E, Biederman J (2008) Functional magnetic resonance imaging of methylphenidate and placebo in attention-deficit/hyperactivity disorder during the multi-source interference task. Arch Gen Psychiatry 65(1):102–114

    Article  CAS  PubMed  Google Scholar 

  9. Carmona S, Proal E, Hoekzema EA, Gispert JD, Picado M, Moreno I, Soliva JC, Bielsa A, Rovira M, Hilferty J, Bulbena A, Casas M, Tobeña A, Vilarroya O (2009) Ventro-striatal reductions underpin symptoms of hyperactivity and impulsivity in attention-deficit/hyperactivity disorder. Biol Psychiatry 66(10):972–977

    Article  PubMed  Google Scholar 

  10. Castellanos FX, Elia J, Kruesi MJ, Marsh WL, Gulotta CS, Potter WZ, Ritchie GF, Hamburger SD, Rapoport JL (1996) Cerebrospinal fluid homovanillic acid predicts behavioral response to stimulants in 45 boys with attention deficit/hyperactivity disorder. Neuropsychopharmacology 14(2):125–137

    Article  CAS  PubMed  Google Scholar 

  11. Castellanos FX, Giedd JN, Berquin PC, Walter JM, Sharp W, Tran T, Vaituzis AC, Blumenthal JD, Nelson J, Bastain TM, Zijdenbos A, Evans AC, Rapoport JL (2001) Quantitative brain magnetic resonance imaging in girls with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 58(3):289–295

    Article  CAS  PubMed  Google Scholar 

  12. Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, Blumenthal JD, James RS, Ebens CL, Walter JM, Zijdenbos A, Evans AC, Giedd JN, Rapoport JL (2002) Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 288(14):1740–1748

    Article  PubMed  Google Scholar 

  13. Conners C (2004) Conners’ continuous performance test II version 5 (CPT II V.5). TEA Ediciones, Madrid

    Google Scholar 

  14. Conners C, Sitarenios G, Parker J, Epstein J (1998) The revised Conners parent rating scale (CPRS-S): factor structure, reliability, and criterion validity. J Abnorm Child Psychol 26(4):257–268

    Article  CAS  PubMed  Google Scholar 

  15. Conners C, Sitarenios G, Parker J, Epstein J (1998) Revision and restandardization of the Conners teacher rating scale (StRS-R): factor structure, reliability, and criterion validity. J Abnorm Child Psychol 26(4):279–291

    Article  CAS  PubMed  Google Scholar 

  16. Duong S, Chung K, Wigal SB (2012) Metabolic, toxicological, and safety considerations for drugs used to treat ADHD. Expert Opin Drug Metab Toxicol 8(5):543–552

    Article  CAS  PubMed  Google Scholar 

  17. Efron D, Jarman F, Barker M (1997) Methylphenidate versus dexamphetamine in children with attention deficit hyperactivity disorder: a double-blind, crossover trial. Pediatrics 100(6):E6

    Article  CAS  PubMed  Google Scholar 

  18. Epstein JN, Casey BJ, Tonev ST, Davidson MC, Reiss AL, Garrett A, Hinshaw SP, Greenhill LL, Glover G, Shafritz KM, Vitolo A, Kotler LA, Jarrett MA, Spicer J (2007) ADHD- and medication-related brain activation effects in concordantly affected parent-child dyads with ADHD. J Child Psychol Psychiatry 48(9):899–913

    Article  PubMed  Google Scholar 

  19. Filipek PA, Semrud-Clikeman M, Steingard RJ, Renshaw PF, Kennedy DN, Biederman J (1997) Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology 48(3):589–601

    Article  CAS  PubMed  Google Scholar 

  20. Grizenko N, Kovacina B, Amor LB, Schwartz G, Ter-Stepanian M, Joober R (2006) Relationship between response to methylphenidate treatment in children with ADHD and psychopathology in their families. J Am Acad Child Adolesc Psychiatry 45(1):47–53

    Article  PubMed  Google Scholar 

  21. Grupo de trabajo de la Guía de Práctica Clínica sobre el Trastorno por Défi cit de Atención con Hiperactividad (TDAH) en Niños y Adolescentes. Fundació Sant Joan de Déu, coordinador. Guía de Práctica Clínica sobre el Trastorno por Défi cit de Atención con Hiperactividad (TDAH) en Niños y Adolescentes. Plan de Calidad para el Sistema Nacional de Salud del Ministerio de Sanidad, Política Social e Igualdad. Agència d′Informació, Avaluació i Qualitat (AIAQS) de Cataluña; 2010. Guías de Práctica Clínica en el SNS: AATRM Nº 2007/18

  22. Gunduz H, Wu H, Ashtari M, Bogerts B, Crandall D, Robinson DG, Alvir J, Lieberman J, Kane J, Bilder R (2002) Basal ganglia volumes in first-episode schizophrenia and healthy comparison subjects. Biol Psychiatry 51(10):801–808

    Article  PubMed  Google Scholar 

  23. Guy W (1976) Early Clinical Drug Evaluation (ECDEU) assessment manual for psychopharmacology. National Institute of Mental Health, Washington DC

    Google Scholar 

  24. Hale JB, Reddy LA, Semrud-Clikeman M, Hain LA, Whitaker J, Morley J, Lawrence K, Smith A, Jones N (2011) Executive impairment determines ADHD medication response: implications for academic achievement. J Learn Disabil 44(2):196–212

    Article  PubMed  Google Scholar 

  25. Hoekzema E, Carmona S, Ramos-Quiroga JA, Canals C, Moreno A, Fernández VR, Picado M, Bosch R, Duñó L, Soliva JC, Rovira M, Bulbena A, Tobeña A, Casas M, Vilarroya O (2012) Stimulant drugs trigger transient volumetric changes in the human ventral striatum. Brain Struct Funct. doi:10.1007/s00429-012-0481-7

    PubMed  Google Scholar 

  26. Ilgin N, Senol S, Gucuyener K, Gokcora N, Sener S (2001) Is increased D2 receptor availability associated with response to stimulant medication in ADHD. Dev Med Child Neurol 43(11):755–760

    Article  CAS  PubMed  Google Scholar 

  27. Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, Williamson D, Ryan N (1997) Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 36(7):980–988

    Article  CAS  PubMed  Google Scholar 

  28. Mahone EM, Crocetti D, Ranta ME, Gaddis A, Cataldo M, Slifer KJ, Denckla MB, Mostofsky SH (2011) A preliminary neuroimaging study of preschool children with ADHD. Clin Neuropsychol 25(6):1009–1028

    Article  CAS  PubMed  Google Scholar 

  29. MTA cooperative group (2004) National Institute of Mental Health multimodal treatment study of ADHD follow-up: changes in effectiveness and growth after the end of treatment. Pediatrics 113(4):762–769

    Article  Google Scholar 

  30. Mulas F, Roselló B, Morant A, Hernández S, Pitarch I (2002) Efectos de los psicoestimulantes en el desempeño cognitivo y conductual de los niños con un déficit de atención con hiperactividad subtipo combinado. Rev Neurol 35(1):17–24

    CAS  PubMed  Google Scholar 

  31. Nakao T, Radua J, Rubia K, Mataix-Cols D (2011) Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am J Psychiatry 168(11):1154–1163

    Article  PubMed  Google Scholar 

  32. Owens EB, Hinshaw SP, Kraemer HC, Arnold LE, Abikoff HB, Cantwell DP, Conners CK, Elliott G, Greenhill LL, Hechtman L, Hoza B, Jensen PS, March JS, Newcorn JH, Pelham WE, Severe JB, Swanson JM, Vitiello B, Wells KC, Wigal T (2003) Which treatment for whom for ADHD? Moderators of treatment response in the MTA. J Consult Clin Psychol 71(3):540–552

    Article  PubMed  Google Scholar 

  33. Pelham WE Jr, Walker JL, Sturges J, Hoza J (1989) Comparative effects of methylphenidate on ADD girls and ADD boys. J Am Acad Child Adolesc Psychiatry 28(5):773–776

    Article  PubMed  Google Scholar 

  34. Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164(6):942–948

    Article  PubMed  Google Scholar 

  35. Rapport MD, Denney C (1997) Titrating methylphenidate in children with attention-deficit/hyperactivity disorder: is body mass predictive of clinical response? J Am Acad Child Adolesc Psychiatry 36(4):523–530

    Article  CAS  PubMed  Google Scholar 

  36. Riccio CA, Waldrop JJ, Reynolds CR, Lowe P (2001) Effects of stimulants on the continuous performance test (CPT): implications for CPT use and interpretation. J Neuropsychiatry Clin Neurosci 13(3):326–335

    Article  CAS  PubMed  Google Scholar 

  37. Rubia K, Halari R, Cubillo A, Smith AB, Mohammad AM, Brammer M, Taylor E (2011) Methylphenidate normalizes fronto-striatal underactivation during interference inhibition in medication-naïve boys with attention-deficit hyperactivity disorder. Neuropsychopharmacology 36(8):1575–1586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Rubio B, Hernández S, Verche E, Martín R, González-Pérez P (2011) A pilot study: differential effects of methylphenidate-OROS on working memory and attention functions in children with attention-deficit/hyperactivity disorder with and without behavioural comorbidities. Atten Defic Hyperact Disord 3(1):13–20

    Article  PubMed  Google Scholar 

  39. Scheres A, Oosterlaan J, Sergeant JA (2006) Speed of inhibition predicts teacher-rated medication response in boys with attention deficit hyperactivity disorder. IJDDE 53:93–109

    Google Scholar 

  40. Shaffer D, Gould MS, Brasic J, Ambrosini P, Fisher P, Bird H, Aluwahlia S (1983) A children’s global assessment scale (CGAS). Arch Gen Psychiatry 40(11):1228–1231

    Article  CAS  PubMed  Google Scholar 

  41. Shekim WO, Javaid J, Davis JM, Bylund DB (1983) Urinary MHPG and HVA excretion in boys with attention deficit disorder and hyperactivity treated with d-amphetamine. Biol Psychiatry 18(6):707–714

    CAS  PubMed  Google Scholar 

  42. Solanto M, Newcorn J, Vail L, Gilbert S, Ivanov I, Lara R (2009) Stimulant drug response in the predominantly inattentive and combined subtypes of attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 19(6):663–671

    Article  PubMed Central  PubMed  Google Scholar 

  43. Spielberger CD, Gorsuch RL, Lushene RE (1970) Manual for the state/trait anxiety inventory in children (version española TEA 1988). Consulting Psychologists Press, Palo Alto

    Google Scholar 

  44. Ter-Stepanian M, Grizenko N, Zappitelli M, Joober R (2010) Clinical response to methylphenidate in children diagnosed with attention-deficit hyperactivity disorder and comorbid psychiatric disorders. Can J Psychiatry 55(5):305–312

    PubMed  Google Scholar 

  45. The MTA cooperative group (1999) Moderators and mediators of treatment response for children with attention-deficit/hyperactivity disorder: the multimodal treatment study of children with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 56(12):1088–1096

    Article  Google Scholar 

  46. Tremols V, Bielsa A, Soliva JC, Raheb C, Carmona S, Tomas J, Gispert JD, Rovira M, Fauquet J, Tobeña A, Bulbena A, Vilarroya O (2008) Differential abnormalities of the head and body of the caudate nucleus in attention deficit-hyperactivity disorder. Psychiatry Res 163(3):270–278

    Article  PubMed  Google Scholar 

  47. van der Oord S, Geurts HM, Prins PJ, Emmelkamp PM, Oosterlaan J (2012) Prepotent response inhibition predicts treatment outcome in attention deficit/hiperactivity disorder. Child Neuropsychol 18(1):50–61

    Article  PubMed  Google Scholar 

  48. van der Oord S, Prins PJ, Oosterlaan J, Emmelkamp PM (2008) Treatment of attention deficit hyperactivity disorder in children. Eur Child Adolesc Psychiatry 17(2):73–81

    Article  PubMed  Google Scholar 

  49. Volkow ND, Wang GJ, Fowler JS, Telang F, Maynard L, Logan J, Gatley SJ, Pappas N, Wong C, Vaska P, Zhu W, Swanson JM (2004) Evidence that methylphenidate enhances the saliency of a mathematical task by increasing dopamine in the human brain. Am J Psychiatry 161(7):1173–1180

    Article  PubMed  Google Scholar 

  50. Volkow ND, Wang GJ, Tomasi D, Kollins SH, Wigal TL, Newcorn JH, Telang FW, Fowler JS, Logan J, Wong CT, Swanson JM (2012) Methylphenidate-elicited dopamine increases in ventral striatum are associated with long-term symptom improvement in adults with attention deficit hyperactivity disorder. J Neurosci 32(3):841–849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Wechsler D (2005) Escala de Inteligencia de Wechsler para niños (WISC-IV). TEA Ediciones, Madrid

    Google Scholar 

  52. Woodward ND, Zald DH, Ding Z, Riccardi P, Ansari MS, Baldwin RM, Cowan RL, Li R, Kessler RM (2009) Cerebral morphology and dopamine D2/D3 receptor distribution in humans: a combined [18F]fallypride and voxel-based morphometry study. Neuroimage 46(1):31–38

    Article  PubMed Central  PubMed  Google Scholar 

  53. Yildiz O, Sismanlar SG, Memik NC, Karakaya I, Agaoglu B (2011) Atomoxetine and methylphenidate treatment in children with ADHD: the efficacy, tolerability and effects on executive functions. Child Psychiatry Hum Dev 42(3):257–269

    Article  PubMed  Google Scholar 

  54. Zalsman G, Pumeranz O, Peretz G, Ben-Dor DH, Dekel S, Horesh N, Fischel T, Nahshoni E, Goldberg PH, Sever J, Apter A (2003) Attention patterns in children with attention deficit disorder with or without hyperactivity. Sci World J 3:1093–1107

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Alicia Koplowitz Foundation Grant.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Moreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, A., Duñó, L., Hoekzema, E. et al. Striatal volume deficits in children with ADHD who present a poor response to methylphenidate. Eur Child Adolesc Psychiatry 23, 805–812 (2014). https://doi.org/10.1007/s00787-013-0510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00787-013-0510-y

Keywords

Navigation