Advertisement

European Child & Adolescent Psychiatry

, Volume 22, Issue 12, pp 757–770 | Cite as

Resting state FMRI research in child psychiatric disorders

  • Marianne OldehinkelEmail author
  • Winke Francx
  • Christian F. Beckmann
  • Jan K. Buitelaar
  • Maarten MennesEmail author
Review

Abstract

Concurring with the shift from linking functions to specific brain areas towards studying network integration, resting state FMRI (R-FMRI) has become an important tool for delineating the functional network architecture of the brain. Fueled by straightforward data collection, R-FMRI analysis methods as well as studies reporting on R-FMRI have flourished, and already impact research on child- and adolescent psychiatric disorders. Here, we review R-FMRI analysis techniques and outline current methodological debates. Furthermore, we provide an overview of the main R-FMRI findings related to child- and adolescent psychiatric disorders. R-FMRI research has contributed significantly to our understanding of brain function in child and adolescent psychiatry: existing hypotheses based on task-based FMRI were confirmed and new insights into the brain’s functional architecture of disorders were established. However, results were not always consistent. While resting state networks are robust and reproducible, neuroimaging research in psychiatric disorders is especially complicated by tremendous phenotypic heterogeneity. It is imperative that we overcome this heterogeneity when integrating neuroimaging into the diagnostic and treatment process. As R-FMRI allows investigating the richness of the human functional connectome and can be easily collected and aggregated into large-scale datasets, it is clear that R-FMRI can be a powerful tool in our quest to understand psychiatric pathology.

Keywords

Resting state FMRI Functional connectivity Child- and adolescent psychiatry ADHD ASD MDD Heterogeneity Imaging 

Notes

Acknowledgments

This work was supported by NIH Grant R01MH62873, NWO Large Investment Grant 1750102007010 and Grants from Radboud University Nijmegen Medical Center. Furthermore, MO was supported by the EU FP7 Grant TACTICS and MM was supported by Netherlands Organization for Scientific Research (NWO) Investment Grant (1750102007010) and NWO Brain and Cognition Grant (056-13-015).

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

787_2013_480_MOESM1_ESM.docx (112 kb)
Supplementary material 1 (DOCX 111 kb)

References

  1. 1.
    Kwong KK (2012) Record of a single fMRI experiment in May of 1991. Neuroimage 62(2):610–612PubMedCrossRefGoogle Scholar
  2. 2.
    Ogawa S et al (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89(13):5951–5955PubMedCrossRefGoogle Scholar
  3. 3.
    Bandettini PA (2012) Twenty years of functional MRI: the science and the stories. Neuroimage 62(2):575–588PubMedCrossRefGoogle Scholar
  4. 4.
    Ogawa S et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87(24):9868–9872PubMedCrossRefGoogle Scholar
  5. 5.
    Friston KJ (2009) Modalities, modes, and models in functional neuroimaging. Science 326(5951):399–403PubMedCrossRefGoogle Scholar
  6. 6.
    Fox PT, Friston KJ (2012) Distributed processing; distributed functions? Neuroimage 61(2):407–426PubMedCrossRefGoogle Scholar
  7. 7.
    Poldrack RA (2012) The future of fMRI in cognitive neuroscience. Neuroimage 62(2):1216–1220PubMedCrossRefGoogle Scholar
  8. 8.
    Biswal B et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541PubMedCrossRefGoogle Scholar
  9. 9.
    Beckmann CF et al (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001–1013PubMedCrossRefGoogle Scholar
  10. 10.
    Greicius MD et al (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100(1):253–258PubMedCrossRefGoogle Scholar
  11. 11.
    Smith SM et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106(31):13040–13045PubMedCrossRefGoogle Scholar
  12. 12.
    Damoiseaux JS et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37):13848–13853PubMedCrossRefGoogle Scholar
  13. 13.
    Zuo XN et al (2010) Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. Neuroimage 49(3):2163–2177PubMedCrossRefGoogle Scholar
  14. 14.
    Shehzad Z et al (2009) The resting brain: unconstrained yet reliable. Cereb Cortex 19(10):2209–2229PubMedCrossRefGoogle Scholar
  15. 15.
    Biswal BB et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107(10):4734–4739PubMedCrossRefGoogle Scholar
  16. 16.
    Fornito A, Bullmore ET (2012) Connectomic intermediate phenotypes for psychiatric disorders. Front Psychiatry 3:32PubMedGoogle Scholar
  17. 17.
    Kelly C et al (2012) Characterizing variation in the functional connectome: promise and pitfalls. Trends Cogn Sci 16(3):181–188PubMedCrossRefGoogle Scholar
  18. 18.
    Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4:8PubMedGoogle Scholar
  19. 19.
    Friston KJ et al (1997) Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6(3):218–229PubMedCrossRefGoogle Scholar
  20. 20.
    Friston K (2009) Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol 7(2):e33PubMedCrossRefGoogle Scholar
  21. 21.
    Van Dijk KR et al (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103(1):297–321PubMedCrossRefGoogle Scholar
  22. 22.
    Kiviniemi V et al (2009) Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Mapp 30(12):3865–3886PubMedCrossRefGoogle Scholar
  23. 23.
    Yan C et al (2009) Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PLoS One 4(5):e5743PubMedCrossRefGoogle Scholar
  24. 24.
    Barnes A, Bullmore ET, Suckling J (2009) Endogenous human brain dynamics recover slowly following cognitive effort. PLoS One 4(8):e6626PubMedCrossRefGoogle Scholar
  25. 25.
    Waites AB et al (2005) Effect of prior cognitive state on resting state networks measured with functional connectivity. Hum Brain Mapp 24(1):59–68PubMedCrossRefGoogle Scholar
  26. 26.
    Duff EP et al (2008) The power of spectral density analysis for mapping endogenous BOLD signal fluctuations. Hum Brain Mapp 29(7):778–790PubMedCrossRefGoogle Scholar
  27. 27.
    Cordes D et al (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 22(7):1326–1333PubMedGoogle Scholar
  28. 28.
    Niazy RK et al (2011) Spectral characteristics of resting state networks. Prog Brain Res 193:259–276PubMedCrossRefGoogle Scholar
  29. 29.
    Van Oort E (2012) Resting state networks are characterized by high frequency BOLD fluctuations. In: 18th Annual Meeting of the Organization for Human Brain Mapping, Beijing, ChinaGoogle Scholar
  30. 30.
    Chang C, Glover GH (2009) Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage 47(4):1448–1459PubMedCrossRefGoogle Scholar
  31. 31.
    Murphy K et al (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44(3):893–905PubMedCrossRefGoogle Scholar
  32. 32.
    Fox MD et al (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101(6):3270–3283PubMedCrossRefGoogle Scholar
  33. 33.
    Weissenbacher A et al (2009) Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage 47(4):1408–1416PubMedCrossRefGoogle Scholar
  34. 34.
    Wong CW et al (2012) Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI. Neuroimage 63(1):356–364PubMedCrossRefGoogle Scholar
  35. 35.
    Chai XJ et al (2012) Anticorrelations in resting state networks without global signal regression. Neuroimage 59(2):1420–1428PubMedCrossRefGoogle Scholar
  36. 36.
    Anderson JS et al (2011) Network anticorrelations, global regression, and phase-shifted soft tissue correction. Hum Brain Mapp 32(6):919–934PubMedCrossRefGoogle Scholar
  37. 37.
    He H, Liu TT (2012) A geometric view of global signal confounds in resting-state functional MRI. Neuroimage 59(3):2339–2348PubMedCrossRefGoogle Scholar
  38. 38.
    Saad ZS et al (2012) Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect 2(1):25–32PubMedCrossRefGoogle Scholar
  39. 39.
    Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59(1):431–438PubMedCrossRefGoogle Scholar
  40. 40.
    Satterthwaite TD et al (2012) Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage 60(1):623–632PubMedCrossRefGoogle Scholar
  41. 41.
    Satterthwaite TD et al (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256PubMedCrossRefGoogle Scholar
  42. 42.
    Power JD et al (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154PubMedCrossRefGoogle Scholar
  43. 43.
    Yan CG et al (2013) A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 76:183–201PubMedCrossRefGoogle Scholar
  44. 44.
    Beckmann CF, Smith SM (2005) Tensorial extensions of independent component analysis for multisubject FMRI analysis. Neuroimage 25(1):294–311PubMedCrossRefGoogle Scholar
  45. 45.
    Carp J (2013) Optimizing the order of operations for movement scrubbing: comment on Power et al. Neuroimage 76:436–438PubMedCrossRefGoogle Scholar
  46. 46.
    Margulies DS et al (2010) Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity. MAGMA 23(5–6):289–307PubMedCrossRefGoogle Scholar
  47. 47.
    Kiviniemi V et al (2003) Independent component analysis of nondeterministic fMRI signal sources. Neuroimage 19(2 Pt 1):253–260PubMedCrossRefGoogle Scholar
  48. 48.
    Beckmann CF (2012) Modelling with independent components. Neuroimage 62(2):891–901PubMedCrossRefGoogle Scholar
  49. 49.
    Abou Elseoud A et al (2012) Altered resting-state activity in seasonal affective disorder. Hum Brain Mapp [Epub ahead of print]Google Scholar
  50. 50.
    Tohka J et al (2008) Automatic independent component labeling for artifact removal in fMRI. Neuroimage 39(3):1227–1245PubMedCrossRefGoogle Scholar
  51. 51.
    Esposito F et al (2005) Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage 25(1):193–205PubMedCrossRefGoogle Scholar
  52. 52.
    De Luca M et al (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29(4):1359–1367PubMedCrossRefGoogle Scholar
  53. 53.
    Calhoun VD et al (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14(3):140–151PubMedCrossRefGoogle Scholar
  54. 54.
    Beckmann CF et al (2009) Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. Neuroimage 47(Suppl 1):S148CrossRefGoogle Scholar
  55. 55.
    Smith SM et al (2012) Temporally-independent functional modes of spontaneous brain activity. Proc Natl Acad Sci USA 109(8):3131–3136PubMedCrossRefGoogle Scholar
  56. 56.
    Zang YF et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29(2):83–91PubMedCrossRefGoogle Scholar
  57. 57.
    Zou QH et al (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172(1):137–141PubMedCrossRefGoogle Scholar
  58. 58.
    Zang Y et al (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22(1):394–400PubMedCrossRefGoogle Scholar
  59. 59.
    Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069PubMedCrossRefGoogle Scholar
  60. 60.
    Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198PubMedCrossRefGoogle Scholar
  61. 61.
    Zuo XN et al (2012) Network centrality in the human functional connectome. Cereb Cortex 22(8):1862–1875PubMedCrossRefGoogle Scholar
  62. 62.
    Zuo XN et al (2010) The oscillating brain: complex and reliable. Neuroimage 49(2):1432–1445PubMedCrossRefGoogle Scholar
  63. 63.
    Chang C, Glover GH (2010) Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50(1):81–98PubMedCrossRefGoogle Scholar
  64. 64.
    Allen EA et al (2012) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex [Epub ahead of print]Google Scholar
  65. 65.
    Hutchison RM et al (2012) Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum Brain Mapp 34:2154–2177PubMedCrossRefGoogle Scholar
  66. 66.
    American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders. 4th edn, (text revision). American Psychiatric Association, Washington, DCGoogle Scholar
  67. 67.
    Cortese S et al (2012) Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI Studies. Am J Psychiatry 169(10):1038–1055PubMedCrossRefGoogle Scholar
  68. 68.
    Dickstein SG et al (2006) The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. J Child Psychol Psychiatry 47(10):1051–1062PubMedCrossRefGoogle Scholar
  69. 69.
    Nigg JT, Casey BJ (2005) An integrative theory of attention-deficit/hyperactivity disorder based on the cognitive and affective neurosciences. Dev Psychopathol 17(3):785–806PubMedGoogle Scholar
  70. 70.
    Hart H et al (2013) Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry 70(2):185–198PubMedCrossRefGoogle Scholar
  71. 71.
    Cao Q et al (2006) Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport 17(10):1033–1036PubMedCrossRefGoogle Scholar
  72. 72.
    Tian L et al (2006) Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Lett 400(1–2):39–43PubMedCrossRefGoogle Scholar
  73. 73.
    Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4(6):215–222PubMedCrossRefGoogle Scholar
  74. 74.
    Bush G, Valera EM, Seidman LJ (2005) Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biol Psychiatry 57(11):1273–1284PubMedCrossRefGoogle Scholar
  75. 75.
    Bush G (2010) Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology 35(1):278–300PubMedCrossRefGoogle Scholar
  76. 76.
    Sun L et al (2012) Abnormal functional connectivity between the anterior cingulate and the default mode network in drug-naive boys with attention deficit hyperactivity disorder. Psychiatry Res 201(2):120–127PubMedCrossRefGoogle Scholar
  77. 77.
    Liu D et al (2010) Using coherence to measure regional homogeneity of resting-state FMRI signal. Front Syst Neurosci 4:24PubMedGoogle Scholar
  78. 78.
    Mennes M et al (2012) Resting state functional connectivity correlates of inhibitory control in children with attention-deficit/hyperactivity disorder. Front Psychiatry 2:83PubMedGoogle Scholar
  79. 79.
    Qiu MG et al (2011) Changes of brain structure and function in ADHD children. Brain Topogr 24(3–4):243–252PubMedCrossRefGoogle Scholar
  80. 80.
    Tomasi D, Volkow ND (2012) Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol Psychiatry 71(5):443–450PubMedCrossRefGoogle Scholar
  81. 81.
    Yang H et al (2011) Abnormal spontaneous brain activity in medication-naive ADHD children: a resting state fMRI study. Neurosci Lett 502(2):89–93PubMedCrossRefGoogle Scholar
  82. 82.
    Chabernaud C et al (2012) Dimensional brain-behavior relationships in children with attention-deficit/hyperactivity disorder. Biol Psychiatry 71(5):434–442PubMedCrossRefGoogle Scholar
  83. 83.
    Fair DA et al (2010) Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biol Psychiatry 68(12):1084–1091PubMedCrossRefGoogle Scholar
  84. 84.
    Wang L et al (2009) Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum Brain Mapp 30(2):638–649PubMedCrossRefGoogle Scholar
  85. 85.
    Costa Dias TG et al (2012) Reward circuit connectivity relates to delay discounting in children with attention-deficit/hyperactivity disorder. Eur Neuropsychopharmacol 23:33–45PubMedCrossRefGoogle Scholar
  86. 86.
    Cao X et al (2009) Abnormal resting-state functional connectivity patterns of the putamen in medication-naive children with attention deficit hyperactivity disorder. Brain Res 1303:195–206PubMedCrossRefGoogle Scholar
  87. 87.
    Raichle ME et al (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682PubMedCrossRefGoogle Scholar
  88. 88.
    Sonuga-Barke EJS, Castellanos FX (2007) Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev 31(7):977–986PubMedCrossRefGoogle Scholar
  89. 89.
    Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121(1):65–94PubMedCrossRefGoogle Scholar
  90. 90.
    Aron AR et al (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6(2):115–116PubMedCrossRefGoogle Scholar
  91. 91.
    Aron AR, Poldrack RA (2005) The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biol Psychiatry 57(11):1285–1292PubMedCrossRefGoogle Scholar
  92. 92.
    Cardinal RN (2006) Neural systems implicated in delayed and probabilistic reinforcement. Neural Netw 19(8):1277–1301PubMedCrossRefGoogle Scholar
  93. 93.
    Mills KL et al (2012) Altered cortico-striatal-thalamic connectivity in relation to spatial working memory capacity in children with ADHD. Front Psychiatry 3:2PubMedGoogle Scholar
  94. 94.
    Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121(Pt 4):561–579PubMedCrossRefGoogle Scholar
  95. 95.
    Durston S et al (2004) Magnetic resonance imaging of boys with attention-deficit/hyperactivity disorder and their unaffected siblings. J Am Acad Child Adolesc Psychiatry 43(3):332–340PubMedCrossRefGoogle Scholar
  96. 96.
    Durston S et al (2007) Neural and behavioral correlates of expectancy violations in attention-deficit hyperactivity disorder. J Child Psychol Psychiatry 48(9):881–889PubMedCrossRefGoogle Scholar
  97. 97.
    Valera EM et al (2005) Functional neuroanatomy of working memory in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 57(5):439–447PubMedCrossRefGoogle Scholar
  98. 98.
    An L et al (2013) Methylphenidate normalizes resting-state brain dysfunction in boys with attention deficit hyperactivity disorder. Neuropsychopharmacology 38:1287–1295PubMedCrossRefGoogle Scholar
  99. 99.
    Castellanos FX, Proal E (2012) Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends Cogn Sci 16(1):17–26PubMedCrossRefGoogle Scholar
  100. 100.
    Tian L et al (2008) Enhanced resting-state brain activities in ADHD patients: a fMRI study. Brain Dev 30(5):342–348PubMedCrossRefGoogle Scholar
  101. 101.
    Tomasi D, Volkow ND (2012) Functional connectivity of substantia nigra and ventral tegmental area: maturation during adolescence and effects of ADHD. Cereb Cortex [Epub ahead of print]Google Scholar
  102. 102.
    Dapretto M et al (2006) Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat Neurosci 9(1):28–30PubMedCrossRefGoogle Scholar
  103. 103.
    Schmitz N et al (2006) Neural correlates of executive function in autistic spectrum disorders. Biol Psychiatry 59(1):7–16PubMedCrossRefGoogle Scholar
  104. 104.
    Just MA et al (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127(Pt 8):1811–1821PubMedCrossRefGoogle Scholar
  105. 105.
    Belmonte MK et al (2004) Autism and abnormal development of brain connectivity. J Neurosci 24(42):9228–9231PubMedCrossRefGoogle Scholar
  106. 106.
    Weng SJ et al (2010) Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Res 1313:202–214PubMedCrossRefGoogle Scholar
  107. 107.
    Rudie JD et al (2012) Autism-associated promoter variant in MET impacts functional and structural brain networks. Neuron 75(5):904–915PubMedCrossRefGoogle Scholar
  108. 108.
    Lynch CJ et al (2013) Default mode network in childhood autism: posteromedial cortex heterogeneity and relationship with social deficits. Biol Psychiatry 74:212–219PubMedCrossRefGoogle Scholar
  109. 109.
    Wiggins JL et al (2011) Using a self-organizing map algorithm to detect age-related changes in functional connectivity during rest in autism spectrum disorders. Brain Res 1380:187–197PubMedCrossRefGoogle Scholar
  110. 110.
    Assaf M et al (2010) Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 53(1):247–256PubMedCrossRefGoogle Scholar
  111. 111.
    Di Martino A et al (2013) Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biol Psychiatry 74:623–632PubMedCrossRefGoogle Scholar
  112. 112.
    Di Martino A et al (2013) The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry [Epub ahead of print]Google Scholar
  113. 113.
    Gotts SJ et al (2012) Fractionation of social brain circuits in autism spectrum disorders. Brain 135(Pt 9):2711–2725PubMedCrossRefGoogle Scholar
  114. 114.
    Dinstein I et al (2011) Disrupted neural synchronization in toddlers with autism. Neuron 70(6):1218–1225PubMedCrossRefGoogle Scholar
  115. 115.
    Paakki JJ et al (2010) Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Res 1321:169–179PubMedCrossRefGoogle Scholar
  116. 116.
    Di Martino A et al (2011) Aberrant striatal functional connectivity in children with autism. Biol Psychiatry 69(9):847–856PubMedCrossRefGoogle Scholar
  117. 117.
    Ebisch SJ et al (2011) Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participants with autism spectrum disorder. Hum Brain Mapp 32(7):1013–1028PubMedCrossRefGoogle Scholar
  118. 118.
    Dziuk MA et al (2007) Dyspraxia in autism: association with motor, social, and communicative deficits. Dev Med Child Neurol 49(10):734–739PubMedCrossRefGoogle Scholar
  119. 119.
    Haswell CC et al (2009) Representation of internal models of action in the autistic brain. Nat Neurosci 12(8):970–972PubMedCrossRefGoogle Scholar
  120. 120.
    Nebel MB et al (2012) Disruption of functional organization within the primary motor cortex in children with autism. Hum Brain Mapp [Epub ahead of print]Google Scholar
  121. 121.
    Phillips ML et al (2003) Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry 54(5):504–514PubMedCrossRefGoogle Scholar
  122. 122.
    Drevets WC (1999) Prefrontal cortical-amygdalar metabolism in major depression. Ann N Y Acad Sci 877:614–637PubMedCrossRefGoogle Scholar
  123. 123.
    Hulvershorn LA, Cullen K, Anand A (2011) Toward dysfunctional connectivity: a review of neuroimaging findings in pediatric major depressive disorder. Brain Imaging Behav 5(4):307–328PubMedCrossRefGoogle Scholar
  124. 124.
    Cullen KR et al (2009) A preliminary study of functional connectivity in comorbid adolescent depression. Neurosci Lett 460(3):227–231PubMedCrossRefGoogle Scholar
  125. 125.
    Gaffrey MS et al (2010) Subgenual cingulate connectivity in children with a history of preschool-depression. Neuroreport 21(18):1182–1188PubMedCrossRefGoogle Scholar
  126. 126.
    Gaffrey MS et al (2012) Default mode network connectivity in children with a history of preschool onset depression. J Child Psychol Psychiatry 53(9):964–972PubMedCrossRefGoogle Scholar
  127. 127.
    Jiao Q et al (2011) Increased activity imbalance in fronto-subcortical circuits in adolescents with major depression. PLoS One 6(9):e25159PubMedCrossRefGoogle Scholar
  128. 128.
    Jin C et al (2011) A preliminary study of the dysregulation of the resting networks in first-episode medication-naive adolescent depression. Neurosci Lett 503(2):105–109PubMedCrossRefGoogle Scholar
  129. 129.
    Luking KR et al (2011) Functional connectivity of the amygdala in early-childhood-onset depression. J Am Acad Child Adolesc Psychiatry 50(10):1027 e3–1041 e3Google Scholar
  130. 130.
    Masi G et al (2007) Clinical and research implications of panic-bipolar comorbidity in children and adolescents. Psychiatry Res 153(1):47–54PubMedCrossRefGoogle Scholar
  131. 131.
    Chen BK et al (2004) Cross-sectional study of abnormal amygdala development in adolescents and young adults with bipolar disorder. Biol Psychiatry 56(6):399–405PubMedCrossRefGoogle Scholar
  132. 132.
    Dickstein DP et al (2005) Frontotemporal alterations in pediatric bipolar disorder: results of a voxel-based morphometry study. Arch Gen Psychiatry 62(7):734–741PubMedCrossRefGoogle Scholar
  133. 133.
    Kaur S et al (2005) Cingulate cortex anatomical abnormalities in children and adolescents with bipolar disorder. Am J Psychiatry 162(9):1637–1643PubMedCrossRefGoogle Scholar
  134. 134.
    Chang K et al (2004) Anomalous prefrontal-subcortical activation in familial pediatric bipolar disorder: a functional magnetic resonance imaging investigation. Arch Gen Psychiatry 61(8):781–792PubMedCrossRefGoogle Scholar
  135. 135.
    Pavuluri MN et al (2007) Affective neural circuitry during facial emotion processing in pediatric bipolar disorder. Biol Psychiatry 62(2):158–167PubMedCrossRefGoogle Scholar
  136. 136.
    Rich BA et al (2006) Limbic hyperactivation during processing of neutral facial expressions in children with bipolar disorder. Proc Natl Acad Sci USA 103(23):8900–8905PubMedCrossRefGoogle Scholar
  137. 137.
    Dickstein DP et al (2010) Fronto-temporal spontaneous resting state functional connectivity in pediatric bipolar disorder. Biol Psychiatry 68(9):839–846PubMedCrossRefGoogle Scholar
  138. 138.
    Xiao Q et al (2013) Altered regional homogeneity in pediatric bipolar disorder during manic state: a resting-state fMRI study. PLoS One 8(3):e57978PubMedCrossRefGoogle Scholar
  139. 139.
    Baxter LR Jr et al (1996) Brain mediation of obsessive-compulsive disorder symptoms: evidence from functional brain imaging studies in the human and nonhuman primate. Semin Clin Neuropsychiatry 1(1):32–47PubMedGoogle Scholar
  140. 140.
    Ursu S et al (2003) Overactive action monitoring in obsessive-compulsive disorder: evidence from functional magnetic resonance imaging. Psychol Sci 14(4):347–353PubMedCrossRefGoogle Scholar
  141. 141.
    Fitzgerald KD et al (2010) Altered function and connectivity of the medial frontal cortex in pediatric obsessive-compulsive disorder. Biol Psychiatry 68(11):1039–1047PubMedCrossRefGoogle Scholar
  142. 142.
    Fitzgerald KD et al (2011) Developmental alterations of frontal-striatal-thalamic connectivity in obsessive-compulsive disorder. J Am Acad Child Adolesc Psychiatry 50(9):938 e3–948 e3Google Scholar
  143. 143.
    Church JA et al (2009) Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain 132(Pt 1):225–238PubMedGoogle Scholar
  144. 144.
    Hong SB et al (2013) Decreased functional brain connectivity in adolescents with internet addiction. PLoS One 8(2):e57831PubMedCrossRefGoogle Scholar
  145. 145.
    Ding WN et al (2013) Altered default network resting-state functional connectivity in adolescents with internet gaming addiction. PLoS One 8(3):e59902PubMedCrossRefGoogle Scholar
  146. 146.
    Roy AK et al (2013) Intrinsic functional connectivity of amygdala-based networks in adolescent generalized anxiety disorder. J Am Acad Child Adolesc Psychiatry 52(3):290 e2–299 e2Google Scholar
  147. 147.
    ADHD-200-Consortium (2012) The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front Syst Neurosci 6:62Google Scholar
  148. 148.
    Fair DA et al (2012) Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Front Syst Neurosci 6:80PubMedGoogle Scholar
  149. 149.
    Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42PubMedCrossRefGoogle Scholar
  150. 150.
    Fair DA et al (2012) Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. Proc Natl Acad Sci USA 109(17):6769–6774PubMedCrossRefGoogle Scholar
  151. 151.
    Poldrack RA et al (2012) Discovering relations between mind, brain, and mental disorders using topic mapping. PLoS Comput Biol 8(10):e1002707PubMedCrossRefGoogle Scholar
  152. 152.
    Dosenbach NU et al (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marianne Oldehinkel
    • 1
    • 2
  • Winke Francx
    • 1
    • 2
  • Christian F. Beckmann
    • 2
    • 3
    • 4
  • Jan K. Buitelaar
    • 1
    • 2
    • 5
  • Maarten Mennes
    • 1
    • 2
  1. 1.Department of Cognitive NeuroscienceRadboud University Nijmegen Medical CenterNijmegenThe Netherlands
  2. 2.Donders Institute for Brain, Cognition and BehaviorNijmegenThe Netherlands
  3. 3.MIRA Institute for Biomedical Technology and Technical MedicineUniversity of TwenteEnschedeThe Netherlands
  4. 4.Centre for Functional MRI of the BrainUniversity of OxfordOxfordUK
  5. 5.Karakter Child and Adolescent Psychiatry University CentreNijmegenThe Netherlands

Personalised recommendations