European Child & Adolescent Psychiatry

, Volume 19, Issue 2, pp 151–157 | Cite as

The volumetric differences of the fronto-temporal region in young offspring of schizophrenic patients

  • Şahika Gülen Şişmanlar
  • Yonca Anık
  • Ayşen Coşkun
  • Belma Ağaoğlu
  • Işık Karakaya
  • Cavit Işık Yavuz
Original Contribution


The aim of this study is to examine the volumetric differences of the fronto-temporal region in the offspring of schizophrenic patients in comparison to normal. Twenty-six offspring of chronic schizophrenic patients aged between 8 and 15 years and 23 control children were matched with respect to cranial MRI. Chronic schizophrenic patients were reevaluated with SCID-I to confirm their diagnosis. Parents of children in the control group completed SCL-90-R and were evaluated by clinical interview to exclude any psychotic disorder. The diagnoses of psychiatric disorders in all of the children were established by DSM-IV-based clinical interviews with children and parents. They underwent IQ evaluation by WISC-R and evaluated with cranial MRI. Hippocampus, thalamus, amygdala, corpus callosum, frontal, and temporal lobe volumes were measured and compared by using MANCOVA. After covarying whole brain volume, age and gender, statistically significant decrease in the measurements of corpus callosum and hippocampi, and a non-significant trend toward smaller temporal lobes were observed in the high-risk children. The structure of hippocampal formation and corpus callosum were impaired in the children of the schizophrenic patients which suggests a neurodevelopmental abnormality in subjects with genetic high risk for schizophrenia.


Schizophrenia High-risk group Frontotemporal region MRI 



This study was presented in part at XVth National Child and Adolescent Psychiatry Congress, April 2005, Istanbul, Turkey, and won the Poster Award of Professor Doctor Fahrettin Kerim Gökay Foundation.


  1. 1.
    Boos HB, Aleman A, Cahn W, Pol HH, Kahn RS (2007) Brain volumes in relatives of patients with schizophrenia: a meta-analysis. Arch Gen Psychiatry 64:297–304CrossRefPubMedGoogle Scholar
  2. 2.
    Bozikas VP, Kosmidis MH, Kiosseoglou G, Karavatos A (2006) Neuropsychological profile of cognitively impaired patients with schizophrenia. Compr Psychiatry 47:136–143CrossRefPubMedGoogle Scholar
  3. 3.
    Bryant NL, Buchanan RW, Vladar K, Breier A, Rothman M (1999) Gender differences in temporal lobe structures of patients with schizophrenia: a volumetric MRI study. Am J Psychiatry 156:603–609PubMedGoogle Scholar
  4. 4.
    Cannon TD, van Erp TG, Huttunen M, Lönnqvist J, Salonen O, Valanne L et al (1998) Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 55:1084–1091CrossRefPubMedGoogle Scholar
  5. 5.
    Dag I (1991) Symptom check list (SCL-90-R); A reliability and validity study. Turk Psikiyatri Derg 2:5–12Google Scholar
  6. 6.
    Deragotis LR (1977) SCL-90: administration, scoring and procedure manual-I for the revised version. John Hopkins Univ, School of Medicine, Clinical Psychometrics Unit, Baltimore, MDGoogle Scholar
  7. 7.
    Diwadkar VA, Sweeney JA, Montrose DM et al (2003) Cognitive impairments and structural MRI abnormalities in schizotypal first degree relatives of schizophrenia patients. Biol Psychiatry 53(Suppl 8):500Google Scholar
  8. 8.
    Erlenmeyer-Kimling L (2000) Neurobehavioral deficits in offspring of schizophrenic parents: liability indicators and predictors of illness. Am J Med Genet 97:65–71CrossRefPubMedGoogle Scholar
  9. 9.
    First MB, Spitzer RL, Gibbon M (1997) Structured clinical ınterview for DSM-IV clinical version (SCID-I/CV). American Psychiatric Press, WashingtonGoogle Scholar
  10. 10.
    Gadow KD, Sprafkin J (2002) Child symptom inventory-4 screening and norms manual. Checkmate Plus, Stony Brook NYGoogle Scholar
  11. 11.
    Gazzaniga MS (2000) Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain 123:1293–1326CrossRefPubMedGoogle Scholar
  12. 12.
    Gottesmann I (1994) Schizophrenia epigenesis: past, present and future. Acta Psychiatr Scand 90:26–33CrossRefGoogle Scholar
  13. 13.
    Gur RE, Gur RC (2000) Schizophrenia: brain structure and function. In: Sadock B, Sadock V (eds) Comprehensive textbook of psychiatry, 7th edn. Lippincott Williams and Wilkins, PhiledelphiaGoogle Scholar
  14. 14.
    Harrison PJ (1997) Schizophrenia: a disorder of neurodevelopment? Curr Opin Neurobiol 7:285–289CrossRefPubMedGoogle Scholar
  15. 15.
    Johnston EC, Russel KD, Harrison LK, Lawrie SM (2003) The Edinburgh high risk study: current status and future prospects. World Psychiatry 2:45–49Google Scholar
  16. 16.
    Keshavan MS, Montrose DM, Pierri JN, Dick EL, Rosenberg D, Talagala L et al (1997) Magnetic resonance imaging and spectroscopy in offspring at risk for schizophrenia: preliminary studies. Prog Neuropsychopharmacol Biol Psychiatry 21:1285–1295CrossRefPubMedGoogle Scholar
  17. 17.
    Keshavan MS, Dick E, Mankowski I, Harenski K, Montrose DM, Diwadkar V et al (2002) Decreased left amygdala and hippocampus volumes in young offspring at risk for schizophrenia. Schizophr Res 58:173–183CrossRefPubMedGoogle Scholar
  18. 18.
    Keshavan MS, Diwadkar VA, Harenski K, Rosenberg DR, Sweney JA, Pettegrew JW (2002) Abnormalities of corpus callosum in first episode, treatment naive schizophrenia. J Neurol Neurosurg Psychiatry 72:757–760CrossRefPubMedGoogle Scholar
  19. 19.
    Keshavan MS, Diwadkar VA, Montrose DM, Stanley JA, Pettegrew JW (2004) Premorbid characterization in schizophrenia: the Pittsburgh High Risk Study. World Psychiatry 3:163–168PubMedGoogle Scholar
  20. 20.
    Lawrie SM, Whalley HC, Abukmeil SS, Kestelman JN, Donnely L, Miller P et al (2001) Brain structure, genetic liability, and psychotic symptoms in subjects at high-risk of developing schizophrenia. Biol Psychiatry 49:811–823CrossRefPubMedGoogle Scholar
  21. 21.
    Lawrie SM, Whalley HC, Abukmeil SS, Kestelman JN, Miller P, Best JJ et al (2002) Temporal lobe volume changes in people at high risk of schizophrenia with psychotic symptoms. Br J Psychiatry 181:138–143PubMedGoogle Scholar
  22. 22.
    Matsui M, Yuuki H, Kato K, Takeuchi A, Nishiyama S, Bilker WB et al (2007) Schizotypal disorder and schizophrenia: a profile analysis of neuropsychological functioning in Japanese patients. J Int Neuropsychol Soc 18:1–11Google Scholar
  23. 23.
    McCarley RW, Wible CG, Frumin M, Hirayasu Y, Levitt JJ, Fischer IA et al (1999) MRI anatomy of schizophrenia. Biol Psychiatry 45:1099–1119CrossRefPubMedGoogle Scholar
  24. 24.
    Narr KL, Thompson PM, Szeszko P, Robinson D, Jang S, Woods RP et al (2004) Regional specificity of hippocampal volume reductions in first-episode schizophrenia. Neuroimage 21:1563–1575CrossRefPubMedGoogle Scholar
  25. 25.
    Nelson MD, Saykin AJ, Flashman LA, Riordan HJ et al (1998) Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch Gen Psychiatry 55:433–440CrossRefPubMedGoogle Scholar
  26. 26.
    Niemi LT, Suvisaari JM, Tuulio-Henriksson A, Lonngvist JK (2003) Childhood developmental abormalities in schizophrenia: evidence from high risk studies. Schizophr Res 60:239–258CrossRefPubMedGoogle Scholar
  27. 27.
    O’Driscoll GA, Florencio PS, Gagnon D, Wolff AV, Benkelfat C, Mikula L et al (2001) Amydala-hippocampal volume and verbal memory in first-degree relatives of schizophrenic patients. Psychiatry Res 107:75–85CrossRefPubMedGoogle Scholar
  28. 28.
    Ozkurkcugil A, Aydemir O, Yildiz M, Esen A, Koroglu E (1999) Turkish adaptation and reliability study for structural clinical ınterview for DSM-IV Axis I disorders. Ilac ve Tedavi Dergisi 12:233–236Google Scholar
  29. 29.
    Pearlson GD, Barta PE, Powers RE, Menon RR, Richards SS, Aylward EH et al (1997) Medial and superior temporal gyral volumes and cerebral asymmetry in schizophrenia versus bipolar disorder. Biol Psychiatry 41:1–14CrossRefPubMedGoogle Scholar
  30. 30.
    Pujol J, Vendrell P, Junqué C, Martí-Vilalta JL, Capdevila A (1993) When does human brain development end? Evidence of corpus callosum growth up to adulthood. Ann Neurol 34:71–75CrossRefPubMedGoogle Scholar
  31. 31.
    Rajarethinam R, Sahni S, Rosenberg DR, Keshavan MS (2004) Reduced superior temporal girus volume in offspring of patients with schizophrenia. Am J Psychiatry 161:1121–1124CrossRefPubMedGoogle Scholar
  32. 32.
    Rajarethinam R, Upadhyaya A, Tsou P, Upadhyaya M, Keshavan MS (2007) Caudate volume in offspring of patients with schizophrenia. Br J Psychiatry 191:258–259CrossRefPubMedGoogle Scholar
  33. 33.
    Schreiber H, Baur-Seack K, Kornhuber HH, Wallner B, Friedrich JM, De Winter IM et al (1999) Brain morphology in adolescents at genetic risk for schizophrenia assessed by qualitative and quantitative magnetic resonance imaging. Schizophr Res 40:81–86CrossRefPubMedGoogle Scholar
  34. 34.
    Seidman LJ, Faraone SV, Goldstein JM, Goodman JM, Kremen WS, Toomey R et al (1997) Reduced subcortical brain volumes in nonpsychotic siblings of schizophrenic patients. Am J Med Genet Neuropsychiatry Genet 74:507–514CrossRefGoogle Scholar
  35. 35.
    Seidman LJ, Faraone SV, Goldstein JM, Goodman JM, Kremen WS, Toomey R et al (1999) Thalamic and amygdala–hippocampal volume reductions in first-degree relatives of patients with schizophrenia: an MRI-based morphometric analysis. Biol Psychiatry 46:941–954CrossRefPubMedGoogle Scholar
  36. 36.
    Seidman LJ, Faraone SV, Goldstein JM, Kremen WS, Horton NJ, Makris N et al (2002) Left hippocampal volume as a vulnerabiliy indicator for schizophrenia: a magnetic resonance imaging morphometric study of nonpsychotic first-degree relatives. Arch Gen Psychiatry 59:839–849CrossRefPubMedGoogle Scholar
  37. 37.
    Seidman LJ, Valera EM, Makris N (2005) Structural brain imaging of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1263–1272CrossRefPubMedGoogle Scholar
  38. 38.
    Squire LR, Zola SM (1996) Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci USA 93:13515–13522CrossRefPubMedGoogle Scholar
  39. 39.
    Stubbe DE (2005) Attention deficit hyperactivity disorder. In: Cheng K, Myers KM (eds) Child and adolescent psychiatry: the essentials. Lippincott Williams and Wilkins, PhiledelphiaGoogle Scholar
  40. 40.
    Tandon R, Keshavan MS, Nasrallah HA (2008) Schizophrenia, “Just the Facts” What we know in 2008. 2. Epidemiology and etiology. Schizophr Res 102:1–18CrossRefPubMedGoogle Scholar
  41. 41.
    Vita A, De Peri L, Silenzi C, Dieci M (2006) Brain morphology in first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance imaging studies. Schizophr Res 82:75–88CrossRefPubMedGoogle Scholar
  42. 42.
    Weinberger D (1995) Schizophrenia: from neuropathology to neuro-development. Lancet 346:552–557CrossRefPubMedGoogle Scholar
  43. 43.
    Woodruff PW, Wright IC, Shuriquie N, Russouw H, Rushe T, Howard RJ et al (1997) Structural brain abnormalities in male schizophrenics reflect fronto-temporal dissociation. Psychol Med 27:1257–1266CrossRefPubMedGoogle Scholar
  44. 44.
    Wright IC, Rabe-Hesketh S, Woodruff PW, David AS, Murray RM, Bullmore ET (2000) Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157:16–25PubMedGoogle Scholar
  45. 45.
    Zornberg G, Buka S, Tsuang M (2000) Hypoxic-ischemia related fetal/neonatal complications and risk of schizophrenia and other nonaffective psychosis: a 19-year longitudinal study. Am J Psychiatry 157:196–202CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Şahika Gülen Şişmanlar
    • 1
  • Yonca Anık
    • 1
  • Ayşen Coşkun
    • 1
  • Belma Ağaoğlu
    • 1
  • Işık Karakaya
    • 1
  • Cavit Işık Yavuz
    • 1
  1. 1.Kocaeli University Medical SchoolKocaeliTurkey

Personalised recommendations